Symmetric hyperbolic systems and constantly hyperbolic systems with constant coefficients and a boundary condition which satisfies a weakened form of the Kreiss-Sakamoto condition are considered. A well-posedness result is established which generalizes a theorem by Chazarain and Piriou for scalar strictly hyperbolic equations and non-characteristic boundaries [
Citation: |
S. Benzoni-Gavage
, F. Rousset
, D. Serre
and K. Zumbrun
, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002)
, 1073-1104.
doi: 10.1017/S030821050000202X.![]() ![]() ![]() |
|
S. L. Campbell, Singular Systems of Differential Equations, volume 40 of Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, Mass., 1980.
![]() ![]() |
|
J. Chazarain
and A. Piriou
, Caractérisation des problémes mixtes hyperboliques bien posés, Ann. Inst. Fourier (Grenoble), 22 (1972)
, 193-237.
doi: 10.5802/aif.438.![]() ![]() ![]() |
|
J. Chazarain and Al. Piriou, Introduction to the Theory of Linear Partial Differential Equations, volume 14 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1982. Translated from the French.
![]() ![]() |
|
I. Chueshov
, I. Lasiecka
and J. T. Webster
, Evolution semigroups in supersonic flow-plate interactions, J. Differential Equations, 254 (2013)
, 1741-1773.
doi: 10.1016/j.jde.2012.11.009.![]() ![]() ![]() |
|
J.-F. Coulombel
, Weakly stable multidimensional shocks, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004)
, 401-443.
doi: 10.1016/j.anihpc.2003.04.001.![]() ![]() ![]() |
|
J.-F. Coulombel
, The hyperbolic region for hyperbolic boundary value problems, Osaka J. Math., 48 (2011)
, 457-469.
![]() ![]() |
|
M. Eller
, On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition, Discrete Contin. Dynam. Systems Series S, 2 (2009)
, 473-481.
doi: 10.3934/dcdss.2009.2.473.![]() ![]() ![]() |
|
M. Eller
, On symmetric hyperbolic boundary problems with nonhomogeneous conservative boundary conditions, SIAM Journal of Mathematical Analysis, 4 (2012)
, 1925-1949.
doi: 10.1137/110834652.![]() ![]() ![]() |
|
O. Guès
, G. Métivier
, M. Williams
and K. Zumbrun
, Uniform stability estimates for constant-coefficient symmetric hyperbolic boundary value problems, Comm. Partial Differential Equations, 32 (2007)
, 579-590.
doi: 10.1080/03605300600636804.![]() ![]() ![]() |
|
R. Hersh
, Mixed problems in several variables, J. Math. Mech., 12 (1963)
, 317-334.
![]() ![]() |
|
H.-O. Kreiss
, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23 (1970)
, 277-298.
doi: 10.1002/cpa.3160230304.![]() ![]() ![]() |
|
I. Lasiecka
and R. Triggiani
, Sharp regularity theory for second order hyperbolic equations of Neumann type. Ⅰ. L2 nonhomogeneous data, Ann. Mat. Pura Appl. (4), 157 (1990)
, 285-367.
doi: 10.1007/BF01765322.![]() ![]() ![]() |
|
I. Lasiecka, "Sharp" regularity results for mixed hyperbolic problems of second order, In Differential equations in Banach spaces (Bologna, 1985), volume 1223 of Lecture Notes in Math., pages 160-175. Springer, Berlin, 1986.
![]() ![]() |
|
A. Majda
and S. Osher
, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975)
, 607-675.
doi: 10.1002/cpa.3160280504.![]() ![]() ![]() |
|
G. Métivier
, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc., 32 (2000)
, 689-702.
doi: 10.1112/S0024609300007517.![]() ![]() ![]() |
|
G. Métivier, On the L2 well-posedness of hyperbolic boundary value problems, Preprint, 2014.
![]() |
|
G. Métivier
and K. Zumbrun
, Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations, 211 (2005)
, 61-134.
doi: 10.1016/j.jde.2004.06.002.![]() ![]() ![]() |
|
T. Ohkubo
, Regularity of solutions to hyperbolic mixed problems with uniformly characteristic boundary, Hokkaido Math. J., 10 (1981)
, 93-123.
doi: 10.14492/hokmj/1381758116.![]() ![]() ![]() |
|
J. V. Ralston
, Note on a paper by Kreiss, Comm. Pure Appl. Math., 24 (1971)
, 759-762.
doi: 10.1002/cpa.3160240603.![]() ![]() ![]() |
|
R. Sakamoto, Hyperbolic Boundary Value Problems, Cambridge University Press, Cambridge, 1982. Translated from the Japanese by Katsumi Miyahara.
![]() ![]() |
|
D. Serre, Systems of Conservation Laws. 2, Cambridge University Press, Cambridge, 2000. Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by Ⅰ. N. Sneddon.
![]() ![]() |
|
G. W. Stewart and J. Guang Sun, Matrix Perturbation Theory, Computer Science and Scientific Computing. Academic Press Inc., Boston, MA, 1990.
![]() ![]() |