\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain

  • * Corresponding author: Yinghui Zhang

    * Corresponding author: Yinghui Zhang
The first author is supported by National Natural Science Foundation of China #11701193, #11671086. The second author is supported by Hunan Provincial Natural Science Foundation of China #2017JJ2105, and National Natural Science Foundation of China #11571280, #11771150, #11301172, 11226170, and National Scholarship Fund in Hunan province cooperation projects.
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate global existence and asymptotic behavior of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain with no-slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial data is near its equilibrium in $H^2(Ω)$ . Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.

    Mathematics Subject Classification: Primary: 76W05, 35Q35; Secondary: 35D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. Adams, Sobolev Space, Academic Press, New York, 1975.
    [2] C. E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005. doi: 10.1017/CBO9780511807169.
    [3] R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity, Indiana Univ. Math. J., 5 (2008), 2299-2319.  doi: 10.1512/iumj.2008.57.3326.
    [4] S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.  doi: 10.1016/j.jcp.2003.07.001.
    [5] S. EvjeT. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70 (2009), 3864-3886.  doi: 10.1016/j.na.2008.07.043.
    [6] S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703.  doi: 10.1016/j.jde.2007.10.032.
    [7] S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894.  doi: 10.3934/cpaa.2009.8.1867.
    [8] S. Evje and T. Flåtten, On the wave structure of two-phase flow models, SIAM J. Appl. Math., 67 (2006/07), 487-511. 
    [9] S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells, SIAM J. Appl. Math., 43 (2011), 1887-1922.  doi: 10.1137/100813932.
    [10] S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction, J. Differential Equations, 251 (2011), 2352-2386.  doi: 10.1016/j.jde.2011.07.013.
    [11] L. FanQ. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces, Nonlinearity, 25 (2012), 2875-2901.  doi: 10.1088/0951-7715/25/10/2875.
    [12] H. A. FriisS. Evje and T. Flåtten, A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model, Adv. Appl. Math. Mech., 1 (2009), 166-200. 
    [13] Z. H. Guo, J. Yang and L. Yao, Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum, J. Math. Phys., 52 (2011), 093102, 14pp.
    [14] C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.  doi: 10.1137/110851602.
    [15] X. F. Hou and H. Y. Wen, A blow-up criterion of strong solutions to a viscous liquid-gas two-phase flow model with vacuum in 3D, Nonlinear Anal., 75 (2012), 5229-5237.  doi: 10.1016/j.na.2012.04.039.
    [16] M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.
    [17] Y. Kagei and S. Kawashima, Local solvability of initial boundary value problem for a quasilinear hyperbolic-parabolic system, J. Hyperbolic Differ. Equ., 3 (2006), 195-232.  doi: 10.1142/S0219891606000768.
    [18] Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum, J. Differential Equations, 252 (2012), 2492-2519.  doi: 10.1016/j.jde.2011.10.018.
    [19] T. P. Liu and Y. Zeng, Compressible Navier-Stokes equations with zero heat conductivity, J. Differential Equations, 153 (1999), 225-291.  doi: 10.1006/jdeq.1998.3554.
    [20] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys., 89 (1983), 445-464. 
    [21] H. Y. WenL. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204-229.  doi: 10.1016/j.matpur.2011.09.005.
    [22] L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations., 247 (2009), 2705-2739.  doi: 10.1016/j.jde.2009.07.013.
    [23] L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.  doi: 10.1007/s00208-010-0544-0.
    [24] L. YaoT. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897.  doi: 10.1137/100785302.
    [25] L. YaoT. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378.  doi: 10.1016/j.jde.2010.12.006.
    [26] L. YaoC. J. Zhu and R. Z. Zi, Incompressible limit of viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 3324-3345.  doi: 10.1137/120862120.
    [27] L. YaoJ. Yang and Z. H. Guo, Blow-up criterion for 3D viscous liquid-gas two-phase flow model, J. Math. Anal. Appl., 395 (2012), 175-190.  doi: 10.1016/j.jmaa.2012.05.018.
    [28] Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differential Equations, 258 (2015), 2315-2338.  doi: 10.1016/j.jde.2014.12.008.
    [29] W. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989.
  • 加载中
SHARE

Article Metrics

HTML views(268) PDF downloads(264) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return