The concept of $p$-modulus gives a way to measure the richness of a family of objects on a graph. In this paper, we investigate the families of connecting walks between two fixed nodes and show how to use $p$-modulus to form a parametrized family of graph metrics that generalize several well-known and widely-used metrics. We also investigate a characteristic of metrics called the "antisnowflaking exponent" and present some numerical findings supporting a conjecture about the new metrics. We end with explicit computations of the new metrics on some selected graphs.
Citation: |
[1] |
N. Albin, J. Clemens, N. Fernando and P. Poggi-Corradini, Blocking duality for p-modulus on networks and applications, arXiv: 1612.00435.
![]() |
[2] |
N. Albin, M. Brunner, R. Perez, P. Poggi-Corradini and N. Wiens, Modulus on graphs as a generalization of standard graph theoretic quantities, Conform. Geom. Dyn., 19 (2015), 298-317.
doi: 10.1090/ecgd/287.![]() ![]() ![]() |
[3] |
N. Albin and P. Poggi-Corradini, Minimal subfamilies and the probabilistic interpretation for modulus on graphs, J. Anal., 24 (2016), 183-208.
doi: 10.1007/s41478-016-0002-9.![]() ![]() ![]() |
[4] |
N. Albin, F. D. Sahneh, M. Goering and P. Poggi-Corradini, Modulus of families of walks on graphs, in Complex Analysis and Dynamical Systems VII, vol. 699 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017, 35–55.
doi: 10.1090/conm/699/14080.![]() ![]() ![]() |
[5] |
G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal, Complex Systems (2006), 1695, URL http://igraph.sf.net.
![]() |
[6] |
S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, Journal of Machine Learning Research, 17 (2016), Paper No. 83, 5 pp.
![]() ![]() |
[7] |
J. Ding, J. R. Lee and Y. Peres, Cover times, blanket times, and majorizing measures, Ann. of Math., 175 (2012), 1409-1471.
doi: 10.4007/annals.2012.175.3.8.![]() ![]() ![]() |
[8] |
P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, vol. 22 of Carus Mathematical Monographs, Mathematical Association of America, Washington, DC, 1984.
![]() ![]() |
[9] |
M. Goering, N. Albin, F. Sahneh, C. Scoglio and P. Poggi-Corradini, Numerical investigation of metrics for epidemic processes on graphs, in 2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, 1317–1322.
doi: 10.1109/ACSSC.2015.7421356.![]() ![]() |
[10] |
E. Jones, T. Oliphant and P. Peterson et al., SciPy: Open source scientific tools for Python, 2001–, URL http://www.scipy.org/, [Online; accessed 2/28/2018].
![]() |
[11] |
D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2009, With a chapter by James G. Propp and David B. Wilson.
![]() ![]() |
[12] |
D. A. Spielman, Graphs, vectors, and matrices, Bull. Amer. Math. Soc. (N.S.), 54 (2017), 45-61.
doi: 10.1090/bull/1557.![]() ![]() ![]() |