Advanced Search
Article Contents
Article Contents

Modulus metrics on networks

  • * Corresponding author: Pietro Poggi-Corradini

    * Corresponding author: Pietro Poggi-Corradini
The authors are supported by NSF n. 1515810.
Abstract Full Text(HTML) Figure(8) Related Papers Cited by
  • The concept of $p$-modulus gives a way to measure the richness of a family of objects on a graph. In this paper, we investigate the families of connecting walks between two fixed nodes and show how to use $p$-modulus to form a parametrized family of graph metrics that generalize several well-known and widely-used metrics. We also investigate a characteristic of metrics called the "antisnowflaking exponent" and present some numerical findings supporting a conjecture about the new metrics. We end with explicit computations of the new metrics on some selected graphs.

    Mathematics Subject Classification: 90C35.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The path graph $P_3$ on three nodes

    Figure 2.  Antisnowflaking exponent for different $p$ values

    Figure 3.  The cycle graph $C_N$ and the extremal density $\rho^*$ for $\Gamma(a, c)$ and $\Gamma(a, b)$

    Figure 4.  $K_6$- Complete graph on 6 nodes

    Figure 5.  The complete graph $K_N$ and the extremal density $\rho^*$ for $\Gamma(a, b)$

    Figure 6.  The square graph

    Figure 7.  Eigenvalues of $M$ as $\beta$ varies, given $\alpha = 1$

    Figure 8.  Comparisons of times required to compute $d_p$ distances on several square 2D grids for different values of $p$

  • [1] N. Albin, J. Clemens, N. Fernando and P. Poggi-Corradini, Blocking duality for p-modulus on networks and applications, arXiv: 1612.00435.
    [2] N. AlbinM. BrunnerR. PerezP. Poggi-Corradini and N. Wiens, Modulus on graphs as a generalization of standard graph theoretic quantities, Conform. Geom. Dyn., 19 (2015), 298-317.  doi: 10.1090/ecgd/287.
    [3] N. Albin and P. Poggi-Corradini, Minimal subfamilies and the probabilistic interpretation for modulus on graphs, J. Anal., 24 (2016), 183-208.  doi: 10.1007/s41478-016-0002-9.
    [4] N. Albin, F. D. Sahneh, M. Goering and P. Poggi-Corradini, Modulus of families of walks on graphs, in Complex Analysis and Dynamical Systems VII, vol. 699 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017, 35–55. doi: 10.1090/conm/699/14080.
    [5] G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal, Complex Systems (2006), 1695, URL http://igraph.sf.net.
    [6] S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, Journal of Machine Learning Research, 17 (2016), Paper No. 83, 5 pp.
    [7] J. DingJ. R. Lee and Y. Peres, Cover times, blanket times, and majorizing measures, Ann. of Math., 175 (2012), 1409-1471.  doi: 10.4007/annals.2012.175.3.8.
    [8] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, vol. 22 of Carus Mathematical Monographs, Mathematical Association of America, Washington, DC, 1984.
    [9] M. Goering, N. Albin, F. Sahneh, C. Scoglio and P. Poggi-Corradini, Numerical investigation of metrics for epidemic processes on graphs, in 2015 49th Asilomar Conference on Signals, Systems and Computers, 2015, 1317–1322. doi: 10.1109/ACSSC.2015.7421356.
    [10] E. Jones, T. Oliphant and P. Peterson et al., SciPy: Open source scientific tools for Python, 2001–, URL http://www.scipy.org/, [Online; accessed 2/28/2018].
    [11] D. A. Levin, Y. Peres and E. L. Wilmer, Markov Chains and Mixing Times, American Mathematical Society, Providence, RI, 2009, With a chapter by James G. Propp and David B. Wilson.
    [12] D. A. Spielman, Graphs, vectors, and matrices, Bull. Amer. Math. Soc. (N.S.), 54 (2017), 45-61.  doi: 10.1090/bull/1557.
  • 加载中



Article Metrics

HTML views(584) PDF downloads(233) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint