January  2019, 24(1): 83-107. doi: 10.3934/dcdsb.2018162

Balanced truncation model reduction of a nonlinear cable-mass PDE system with interior damping

1. 

School of Mechanical, Industrial, & Manufacturing Engineering, Oregon State University, Corvallis, OR 97331-6011, USA

2. 

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA

* Corresponding author

† H. Shoori and J. Singler were supported in part by National Science Foundation grant DMS-1217122; B. Batten was supported in part by the Department of Energy under Award Number DE-FG36-08GO18179.

Received  February 2017 Revised  January 2018 Published  June 2018

We consider model order reduction of a nonlinear cable-mass system modeled by a 1D wave equation with interior damping and dynamic boundary conditions. The system is driven by a time dependent forcing input to a linear mass-spring system at one boundary. The goal of the model reduction is to produce a low order model that produces an accurate approximation to the displacement and velocity of the mass in the nonlinear mass-spring system at the opposite boundary. We first prove that the linearized and nonlinear unforced systems are well-posed and exponentially stable under certain conditions on the damping parameters, and then consider a balanced truncation method to generate the reduced order model (ROM) of the nonlinear input-output system. Little is known about model reduction of nonlinear input-output systems, and so we present detailed numerical experiments concerning the performance of the nonlinear ROM. We find that the ROM is accurate for many different combinations of model parameters.

Citation: Belinda A. Batten, Hesam Shoori, John R. Singler, Madhuka H. Weerasinghe. Balanced truncation model reduction of a nonlinear cable-mass PDE system with interior damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 83-107. doi: 10.3934/dcdsb.2018162
References:
[1]

D. Amsallem and U. Hetmaniuk, Error estimates for Galerkin reduced-order models of the semi-discrete wave equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 135-163.  doi: 10.1051/m2an/2013099.  Google Scholar

[2]

A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, vol. 6 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005, With a foreword by Jan C. Willems. doi: 10.1137/1.9780898718713.  Google Scholar

[3]

H. T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press, Boca Raton, FL, 2012. doi: 10.1201/b12209.  Google Scholar

[4]

B. A. Batten and K. A. Evans, Reduced-order compensators via balancing and central control design for a structural control problem, Internat. J. Control, 83 (2010), 563-574.  doi: 10.1080/00207170903301234.  Google Scholar

[5]

B. A. Batten, H. Shoori, J. R. Singler and M. H. Weerasinghe, Model reduction of a nonlinear cable-mass PDE system with dynamic boundary input, in Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, (2016), 327–334. Google Scholar

[6]

P. Benner and P. Goyal, Balanced truncation model order reduction for quadratic-bilinear control systems, arXiv: 1705.00160. Google Scholar

[7]

P. Benner, E. Sachs and S. Volkwein, Model order reduction for PDE constrained optimization, in Trends in PDE constrained optimization, vol. 165 of Internat. Ser. Numer. Math., Birkhäuser/Springer, Cham, 2014,303–326. doi: 10.1007/978-3-319-05083-6_19.  Google Scholar

[8]

T. Bui-ThanhK. Willcox and O. Ghattas, Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications, AIAA Journal, 46 (2008), 2520-2529.   Google Scholar

[9]

J. A. Burns and E. M. Cliff, Control of hyperbolic PDE systems with actuator dynamics, in Proceedings of IEEE Conference on Decision and Control, 2014, 2864–2869. doi: 10.1109/CDC.2014.7039829.  Google Scholar

[10]

J. A. Burns and B. B. King, A reduced basis approach to the design of low-order feedback controllers for nonlinear continuous systems, J. Vib. Control, 4 (1998), 297-323.  doi: 10.1177/107754639800400305.  Google Scholar

[11]

J. A. Burns and L. Zietsman, On the inclusion of actuator dynamics in boundary control of distributed parameter systems, in IFAC Proceedings Volumes, 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, 45 (2012), 138–142. doi: 10.3182/20120829-3-IT-4022.00039.  Google Scholar

[12]

J. A. Burns and L. Zietsman, Control of a thermal fluid heat exchanger with actuator dynamics, in Proceedings of IEEE Conference on Decision and Control, 2016, 3131–3136. doi: 10.1109/CDC.2016.7798738.  Google Scholar

[13]

S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737-2764.  doi: 10.1137/090766498.  Google Scholar

[14]

F. Conrad and A. Mifdal, Uniform stabilization of a hybrid system with a class of nonlinear feedback laws, Adv. Math. Sci. Appl., 11 (2001), 549-569.   Google Scholar

[15]

R. F. Curtain and A. J. Sasane, Compactness and nuclearity of the Hankel operator and internal stability of infinite-dimensional state linear systems, Internat. J. Control, 74 (2001), 1260-1270.  doi: 10.1080/00207170110061059.  Google Scholar

[16]

D. N. Daescu and I. M. Navon, Efficiency of a POD-based reduced second-order adjoint model in 4D-var data assimilation, Internat. J. Numer. Methods Fluids, 53 (2007), 985-1004.  doi: 10.1002/fld.1316.  Google Scholar

[17]

F. FangT. ZhangD. PavlidisC. PainA. Buchan and I. Navon, Reduced order modelling of an unstructured mesh air pollution model and application in 2d/3d urban street canyons, Atmospheric Environment, 96 (2014), 96-106.  doi: 10.1016/j.atmosenv.2014.07.021.  Google Scholar

[18]

N. Fourrier and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[19]

K. GloverR. F. Curtain and J. R. Partington, Realisation and approximation of linear infinite-dimensional systems with error bounds, SIAM J. Control Optim., 26 (1988), 863-898.  doi: 10.1137/0326049.  Google Scholar

[20]

Y. GongQ. Wang and Z. Wang, Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems, Comput. Methods Appl. Mech. Engrg., 315 (2017), 780-798.  doi: 10.1016/j.cma.2016.11.016.  Google Scholar

[21]

C. Guiver and M. R. Opmeer, Model reduction by balanced truncation for systems with nuclear Hankel operators, SIAM J. Control Optim., 52 (2014), 1366-1401.  doi: 10.1137/110846981.  Google Scholar

[22]

M. GunzburgerN. Jiang and M. Schneier, An ensemble-proper orthogonal decomposition method for the nonstationary Navier-Stokes equations, SIAM J. Numer. Anal., 55 (2017), 286-304.  doi: 10.1137/16M1056444.  Google Scholar

[23]

M. Gunzburger and H.-C. Lee, Reduced-order modeling of Navier-Stokes equations via centroidal Voronoi tessellation, in Recent advances in adaptive computation, vol. 383 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005, 213–224. doi: 10.1090/conm/383/07166.  Google Scholar

[24]

S. HerktM. Hinze and R. Pinnau, Convergence analysis of Galerkin POD for linear second order evolution equations, Electron. Trans. Numer. Anal., 40 (2013), 321-337.   Google Scholar

[25]

D. B. P. HuynhD. J. Knezevic and A. T. Patera, A Laplace transform certified reduced basis method; application to the heat equation and wave equation, C. R. Math. Acad. Sci. Paris, 349 (2011), 401-405.  doi: 10.1016/j.crma.2011.02.003.  Google Scholar

[26]

M. IlakS. BagheriL. BrandtC. W. Rowley and D. S. Henningson, Model reduction of the nonlinear complex Ginzburg-Landau equation, SIAM J. Appl. Dyn. Syst., 9 (2010), 1284-1302.  doi: 10.1137/100787350.  Google Scholar

[27]

B. B. King, Modeling and control of a multiple component structure, J. Math. Systems Estim. Control, 4 (1994), 36pp.  Google Scholar

[28]

V. Komornik, Exact Controllability and Stabilization, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, The multiplier method.  Google Scholar

[29]

B. C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), 17-32.  doi: 10.1109/TAC.1981.1102568.  Google Scholar

[30]

O. Morgül, Stabilization and disturbance rejection for the wave equation, IEEE Trans. Automat. Control, 43 (1998), 89-95.  doi: 10.1109/9.654893.  Google Scholar

[31]

K. Morris, H-control of acoustic noise in a duct with a feedforward configuration, in Proceedings of 15th International Symposium on Mathematical Theory of Networks and Systems, 2002, 12–16. Google Scholar

[32]

M. R. Opmeer, Nuclearity of Hankel operators for ultradifferentiable control systems, Systems Control Lett., 57 (2008), 913-918.  doi: 10.1016/j.sysconle.2008.04.007.  Google Scholar

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[34]

L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems, SIAM J. Sci. Comput., 38 (2016), A1-A27.  doi: 10.1137/140978922.  Google Scholar

[35]

V. Pereyra, Model order reduction with oblique projections for large scale wave propagation, J. Comput. Appl. Math., 295 (2016), 103-114.  doi: 10.1016/j.cam.2015.01.029.  Google Scholar

[36]

J. M. A. Scherpen, Balancing for nonlinear systems, Systems Control Lett., 21 (1993), 143-153.  doi: 10.1016/0167-6911(93)90117-O.  Google Scholar

[37]

H. E. Shoori J., An Approach to Reduced-Order Modeling and Feedback Control for Wave Energy Converters, Master's thesis, Oregon State University, 2014, URL http://ir.library.oregonstate.edu/xmlui/handle/1957/50823. Google Scholar

[38]

A. VarshneyS. Pitchaiah and A. Armaou, Feedback control of dissipative PDE systems using adaptive model reduction, AIChE journal, 55 (2009), 906-918.  doi: 10.1002/aic.11770.  Google Scholar

[39]

Z. Zhang, Stabilization of the wave equation with variable coefficients and a dynamical boundary control, Electron. J. Differential Equations, 2016 (2016), Paper No. 27, 10pp.  Google Scholar

[40]

K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, 1996. Google Scholar

show all references

References:
[1]

D. Amsallem and U. Hetmaniuk, Error estimates for Galerkin reduced-order models of the semi-discrete wave equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 135-163.  doi: 10.1051/m2an/2013099.  Google Scholar

[2]

A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, vol. 6 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005, With a foreword by Jan C. Willems. doi: 10.1137/1.9780898718713.  Google Scholar

[3]

H. T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press, Boca Raton, FL, 2012. doi: 10.1201/b12209.  Google Scholar

[4]

B. A. Batten and K. A. Evans, Reduced-order compensators via balancing and central control design for a structural control problem, Internat. J. Control, 83 (2010), 563-574.  doi: 10.1080/00207170903301234.  Google Scholar

[5]

B. A. Batten, H. Shoori, J. R. Singler and M. H. Weerasinghe, Model reduction of a nonlinear cable-mass PDE system with dynamic boundary input, in Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, (2016), 327–334. Google Scholar

[6]

P. Benner and P. Goyal, Balanced truncation model order reduction for quadratic-bilinear control systems, arXiv: 1705.00160. Google Scholar

[7]

P. Benner, E. Sachs and S. Volkwein, Model order reduction for PDE constrained optimization, in Trends in PDE constrained optimization, vol. 165 of Internat. Ser. Numer. Math., Birkhäuser/Springer, Cham, 2014,303–326. doi: 10.1007/978-3-319-05083-6_19.  Google Scholar

[8]

T. Bui-ThanhK. Willcox and O. Ghattas, Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications, AIAA Journal, 46 (2008), 2520-2529.   Google Scholar

[9]

J. A. Burns and E. M. Cliff, Control of hyperbolic PDE systems with actuator dynamics, in Proceedings of IEEE Conference on Decision and Control, 2014, 2864–2869. doi: 10.1109/CDC.2014.7039829.  Google Scholar

[10]

J. A. Burns and B. B. King, A reduced basis approach to the design of low-order feedback controllers for nonlinear continuous systems, J. Vib. Control, 4 (1998), 297-323.  doi: 10.1177/107754639800400305.  Google Scholar

[11]

J. A. Burns and L. Zietsman, On the inclusion of actuator dynamics in boundary control of distributed parameter systems, in IFAC Proceedings Volumes, 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, 45 (2012), 138–142. doi: 10.3182/20120829-3-IT-4022.00039.  Google Scholar

[12]

J. A. Burns and L. Zietsman, Control of a thermal fluid heat exchanger with actuator dynamics, in Proceedings of IEEE Conference on Decision and Control, 2016, 3131–3136. doi: 10.1109/CDC.2016.7798738.  Google Scholar

[13]

S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737-2764.  doi: 10.1137/090766498.  Google Scholar

[14]

F. Conrad and A. Mifdal, Uniform stabilization of a hybrid system with a class of nonlinear feedback laws, Adv. Math. Sci. Appl., 11 (2001), 549-569.   Google Scholar

[15]

R. F. Curtain and A. J. Sasane, Compactness and nuclearity of the Hankel operator and internal stability of infinite-dimensional state linear systems, Internat. J. Control, 74 (2001), 1260-1270.  doi: 10.1080/00207170110061059.  Google Scholar

[16]

D. N. Daescu and I. M. Navon, Efficiency of a POD-based reduced second-order adjoint model in 4D-var data assimilation, Internat. J. Numer. Methods Fluids, 53 (2007), 985-1004.  doi: 10.1002/fld.1316.  Google Scholar

[17]

F. FangT. ZhangD. PavlidisC. PainA. Buchan and I. Navon, Reduced order modelling of an unstructured mesh air pollution model and application in 2d/3d urban street canyons, Atmospheric Environment, 96 (2014), 96-106.  doi: 10.1016/j.atmosenv.2014.07.021.  Google Scholar

[18]

N. Fourrier and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.  doi: 10.3934/eect.2013.2.631.  Google Scholar

[19]

K. GloverR. F. Curtain and J. R. Partington, Realisation and approximation of linear infinite-dimensional systems with error bounds, SIAM J. Control Optim., 26 (1988), 863-898.  doi: 10.1137/0326049.  Google Scholar

[20]

Y. GongQ. Wang and Z. Wang, Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems, Comput. Methods Appl. Mech. Engrg., 315 (2017), 780-798.  doi: 10.1016/j.cma.2016.11.016.  Google Scholar

[21]

C. Guiver and M. R. Opmeer, Model reduction by balanced truncation for systems with nuclear Hankel operators, SIAM J. Control Optim., 52 (2014), 1366-1401.  doi: 10.1137/110846981.  Google Scholar

[22]

M. GunzburgerN. Jiang and M. Schneier, An ensemble-proper orthogonal decomposition method for the nonstationary Navier-Stokes equations, SIAM J. Numer. Anal., 55 (2017), 286-304.  doi: 10.1137/16M1056444.  Google Scholar

[23]

M. Gunzburger and H.-C. Lee, Reduced-order modeling of Navier-Stokes equations via centroidal Voronoi tessellation, in Recent advances in adaptive computation, vol. 383 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005, 213–224. doi: 10.1090/conm/383/07166.  Google Scholar

[24]

S. HerktM. Hinze and R. Pinnau, Convergence analysis of Galerkin POD for linear second order evolution equations, Electron. Trans. Numer. Anal., 40 (2013), 321-337.   Google Scholar

[25]

D. B. P. HuynhD. J. Knezevic and A. T. Patera, A Laplace transform certified reduced basis method; application to the heat equation and wave equation, C. R. Math. Acad. Sci. Paris, 349 (2011), 401-405.  doi: 10.1016/j.crma.2011.02.003.  Google Scholar

[26]

M. IlakS. BagheriL. BrandtC. W. Rowley and D. S. Henningson, Model reduction of the nonlinear complex Ginzburg-Landau equation, SIAM J. Appl. Dyn. Syst., 9 (2010), 1284-1302.  doi: 10.1137/100787350.  Google Scholar

[27]

B. B. King, Modeling and control of a multiple component structure, J. Math. Systems Estim. Control, 4 (1994), 36pp.  Google Scholar

[28]

V. Komornik, Exact Controllability and Stabilization, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, The multiplier method.  Google Scholar

[29]

B. C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control, 26 (1981), 17-32.  doi: 10.1109/TAC.1981.1102568.  Google Scholar

[30]

O. Morgül, Stabilization and disturbance rejection for the wave equation, IEEE Trans. Automat. Control, 43 (1998), 89-95.  doi: 10.1109/9.654893.  Google Scholar

[31]

K. Morris, H-control of acoustic noise in a duct with a feedforward configuration, in Proceedings of 15th International Symposium on Mathematical Theory of Networks and Systems, 2002, 12–16. Google Scholar

[32]

M. R. Opmeer, Nuclearity of Hankel operators for ultradifferentiable control systems, Systems Control Lett., 57 (2008), 913-918.  doi: 10.1016/j.sysconle.2008.04.007.  Google Scholar

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[34]

L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems, SIAM J. Sci. Comput., 38 (2016), A1-A27.  doi: 10.1137/140978922.  Google Scholar

[35]

V. Pereyra, Model order reduction with oblique projections for large scale wave propagation, J. Comput. Appl. Math., 295 (2016), 103-114.  doi: 10.1016/j.cam.2015.01.029.  Google Scholar

[36]

J. M. A. Scherpen, Balancing for nonlinear systems, Systems Control Lett., 21 (1993), 143-153.  doi: 10.1016/0167-6911(93)90117-O.  Google Scholar

[37]

H. E. Shoori J., An Approach to Reduced-Order Modeling and Feedback Control for Wave Energy Converters, Master's thesis, Oregon State University, 2014, URL http://ir.library.oregonstate.edu/xmlui/handle/1957/50823. Google Scholar

[38]

A. VarshneyS. Pitchaiah and A. Armaou, Feedback control of dissipative PDE systems using adaptive model reduction, AIChE journal, 55 (2009), 906-918.  doi: 10.1002/aic.11770.  Google Scholar

[39]

Z. Zhang, Stabilization of the wave equation with variable coefficients and a dynamical boundary control, Electron. J. Differential Equations, 2016 (2016), Paper No. 27, 10pp.  Google Scholar

[40]

K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, 1996. Google Scholar

Figure 1.  The cable mass system
Figure 2.  Eigenvalues of the linear system and energy decay for the nonlinear system with $\gamma = \alpha_{l} = 0.1 $, $k_{0} = k_{l} = 1$, and $\alpha_{0} = \alpha = 0$
Figure 3.  Eigenvalues of the linear system and energy decay for the nonlinear system with $\gamma = 0$ and $\alpha = \alpha_{0} = \alpha_{l} = k_{0} = k_{l} = 0.01$
Figure 4.  Example 1, Input 2: Output of the ROM and FOM for $\alpha_{0} = \alpha = 0$, $\alpha_{l} = k_{0} = k_{l} = 0.1$, and $\gamma = 0.001$
Figure 5.  Example 5, Input 4: Output of the nonlinear ROM and FOM for $\alpha = \alpha_{0} = \alpha_{l} = 0$, $\gamma = 0.001$, and $k_{0} = k_{l} = 0.1$
Figure 6.  Example 2, Input 1: Output of the ROM and FOM for $\gamma = 0$, $\alpha = \alpha_{0} = \alpha_{l} = 0.1$, and $k_{0} = k_{l} = 0.001$
Figure 7.  Example 1, Input 4: Output of the ROM and FOM for $ \alpha = \alpha_0 = 0 $, $\gamma = \alpha_{l} = 0.1$, and $k_{0} = k_{l} = 0.001$
Figure 8.  Example 5, Input 4: Output of the ROM and FOM for $\gamma = 0.1$, $\alpha = \alpha_{0} = \alpha_{l} = 0$, and $k_{0} = k_{l} = 0.001$
Figure 9.  Example 3: Output of the nonlinear ROM and FOM for $\alpha_{0} = \alpha_{l} = 0$ and $\alpha = \gamma = k_{0} = k_{l} = 0.001$
Table 1.  Fixed simulation parameters
$ l $$ m_0 $$ m_l $$ k_3 $$ \beta $
111.511
$ l $$ m_0 $$ m_l $$ k_3 $$ \beta $
111.511
[1]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (82)
  • HTML views (382)
  • Cited by (0)

[Back to Top]