
-
Previous Article
Partitioned second order method for magnetohydrodynamics in Elsässer variables
- DCDS-B Home
- This Issue
-
Next Article
Numerical preservation of long-term dynamics by stochastic two-step methods
Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion
1. | School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Pevensey Ⅲ, 5C15, Falmer, Brigton, BN1 9QH, England, UK |
2. | Escola Superior de Tecnologia do Barreiro/IPS, Rua Américo da Silva Marinho-Lavradio, 2839-001 Barreiro, Portugal |
In this article we present, for the first time, domain-growth induced pattern formation for reaction-diffusion systems with linear cross-diffusion on evolving domains and surfaces. Our major contribution is that by selecting parameter values from spaces induced by domain and surface evolution, patterns emerge only when domain growth is present. Such patterns do not exist in the absence of domain and surface evolution. In order to compute these domain-induced parameter spaces, linear stability theory is employed to establish the necessary conditions for domain-growth induced cross-diffusion-driven instability for reaction-diffusion systems with linear cross-diffusion. Model reaction-kinetic parameter values are then identified from parameter spaces induced by domain-growth only; these exist outside the classical standard Turing space on stationary domains and surfaces. To exhibit these patterns we employ the finite element method for solving reaction-diffusion systems with cross-diffusion on continuously evolving domains and surfaces.
References:
[1] |
W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin and T. D. Young, The deal. ii library, version 8. 1, 2013. arXiv: 1312.2266. |
[2] |
J. Bard and I. Lauder,
How well does Turing's theory of morphogenesis work?, J. Theor. Bio., 45 (1974), 501-531.
|
[3] |
R. Barreira, C. M. Elliott and A. Madzvamuse,
The surface finite element method for pattern formation on evolving biological surfaces, Journal of Math. Bio., 63 (2011), 1095-1119.
doi: 10.1007/s00285-011-0401-0. |
[4] |
F. J. Blom,
Considerations on the spring analogy, Int. J. Numer. Meth. Fluids, 12 (2000), 647-668.
|
[5] |
V. Capasso and D. Liddo,
Asymptotic behaviour of reaction-diffusion systems in population and epidemic models. The role of cross-diffusion, J. Math. Biol., 32 (1994), 453-463.
doi: 10.1007/BF00160168. |
[6] |
V. Capasso and D. Liddo,
Global attractivity for reaction-diffusion systems. The case of nondiagonal diffusion matrices, J. Math. Anal. and App., 177 (1993), 510-529.
doi: 10.1006/jmaa.1993.1274. |
[7] |
M. A. J. Chaplain, M. Ganesh and I. G. Graham,
Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth, J. Math. Biol., 42 (2001), 387-423.
doi: 10.1007/s002850000067. |
[8] |
E. J. Crampin, W. W. Hackborn and P. K. Maini,
Pattern formation in reaction-diffusion models with nonuniform domain growth, Bull. Math. Biol., 64 (2002), 746-769.
|
[9] |
K. Deckelnick, G. Dziuk and C. M. Elliott,
Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14 (2005), 139-232.
doi: 10.1017/S0962492904000224. |
[10] |
A. Donna and C. Helzel,
A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes, SIAM J. Sci. Comput., 31 (2009), 4066-4099.
doi: 10.1137/08073322X. |
[11] |
G. Dziuk and C. M. Elliott,
Surface finite elements for parabolic equations, J. Comp. Math., 25 (2007), 385-407.
|
[12] |
G. Dziuk and C. M. Elliott,
Eulerian finite element method for parabolic PDEs on implicit surfaces, Interfaces Free Bound, 10 (2008), 119-138.
doi: 10.4171/IFB/182. |
[13] |
G. Dziuk and C. M. Elliott,
An Eulerian approach to transport and diffusion on evolving implicit surfaces, Comput. Vis. Sci., 13 (2010), 17-28.
doi: 10.1007/s00791-008-0122-0. |
[14] |
G. Dziuk and C. M. Elliott,
Finite element methods for surface PDEs, Acta Numer., 22 (2013), 289-396.
doi: 10.1017/S0962492913000056. |
[15] |
C. M. Elliott, B. Stinner, V. Styles and R. Welford,
Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31 (2011), 786-812.
doi: 10.1093/imanum/drq005. |
[16] |
G. Gambino, M. C. Lombardo and M. Sammartino,
Turing instability and traveling fronts for nonlinear reaction-diffusion system with cross-diffusion, Maths. Comp. in Sim., 82 (2012), 1112-1132.
doi: 10.1016/j.matcom.2011.11.004. |
[17] |
G. Gambino, M. C. Lombardo and M. Sammartino,
Pattern formation driven by cross-diffusion in 2-D domain, Nonlinear Analysis: Real World Applications, 14 (2013), 1755-1779.
doi: 10.1016/j.nonrwa.2012.11.009. |
[18] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
|
[19] |
J. B. Greer, A. L. Bertozzi and G. Sapiro,
Fourth order partial differential equations on general geometries, J. Comput. Phys., 216 (2006), 216-246.
doi: 10.1016/j.jcp.2005.11.031. |
[20] |
G. Hetzer, A. Madzvamuse and W. Shen,
Characterization of Turing diffusion-driven instability on evolving domains, Discrete Cont. Dyn. Syst., 32 (2012), 3975-4000.
doi: 10.3934/dcds.2012.32.3975. |
[21] |
S. E. Hieber and P. Koumoutsakos,
A Lagrangian particle level set method, J. Comput. Phys., 210 (2005), 342-367.
doi: 10.1016/j.jcp.2005.04.013. |
[22] |
M. Iida and M. Mimura,
Diffusion, cross-diffusion an competitive interaction, J. Math. Biol., 53 (2006), 617-641.
doi: 10.1007/s00285-006-0013-2. |
[23] |
S. Kovács,
Turing bifurcation in a system with cross-diffusion, Nonlinear Analysis, 59 (2004), 567-581.
doi: 10.1016/j.na.2004.07.025. |
[24] |
O. Lakkis, A. Madzvamuse and C. Venkataraman,
Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains, SIAM Journal on Numerical Analysis, 51 (2013), 2309-2330.
doi: 10.1137/120880112. |
[25] |
C. B. Macdonald, B. Merriman and S. J. Ruuth,
Simple computation of reaction- diffusion processes on point clouds, Proc. Nat. Acad. Sci. USA., 110 (2013), 9209-9214.
doi: 10.1073/pnas.1221408110. |
[26] |
C. B. Macdonald and S. J. Ruuth,
The implicit closest point method for the numerical solution of partial differential equations on surfaces, SIAM J. Sci. Comput., 31 (2010), 4330-4350.
doi: 10.1137/080740003. |
[27] |
A. Madzvamuse, R. K. Thomas, P. K. Maini and A. J. Wathen,
A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves, Bulletin of Mathematical Biology., 64 (2002), 501-530.
|
[28] |
A. Madzvamuse, P. K. Maini and A. J. Wathen,
A moving grid finite element method applied to a model biological pattern generator, J. Comp. Phys., 190 (2003), 478-500.
doi: 10.1016/S0021-9991(03)00294-8. |
[29] |
A. Madzvamuse, A. J. Wathen and P. K. Maini,
A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sci. Comp., 24 (2005), 247-262.
doi: 10.1007/s10915-004-4617-7. |
[30] |
A. Madzvamuse,
Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Sci. Phys., 216 (2006), 239-263.
doi: 10.1016/j.jcp.2005.09.012. |
[31] |
A. Madzvamuse,
A modified backward Euler scheme for advection-reaction-diffusion systems. Mathematical modeling of biological systems, Mathematical Modeling of Biological Systems, 1 (2007), 183-190.
|
[32] |
A. Madzvamuse, E. A. Gaffney and P. K. Maini,
Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61 (2010), 133-164.
doi: 10.1007/s00285-009-0293-4. |
[33] |
A. Madzvamuse, H. S. Ndakwo and R. Barreira,
Cross-diffusion-driven instability for reaction-diffusion systems: Analysis and simulations, Journal of Math. Bio., 70 (2014), 709-743.
doi: 10.1007/s00285-014-0779-6. |
[34] |
A. Madzvamuse and R. Barreira, Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces, Physical Review E, 90 (2014). 043307-1-043307-14. ISSN 1539-3755. |
[35] |
A. Madzvamuse, H. S. Ndakwo and R. Barreira,
Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion, Discrete and Continuous Dynamical Systems. Series A., 36 (2016), 2133-2170.
doi: 10.3934/dcds.2016.36.2133. |
[36] |
P. K. Maini, E. J. Crampin, A. Madzvamuse, A. J. Wathen and R. D. K. Thomas, Implications of Domain Growth in Morphogenesis, Mathematical Modelling and Computing in Biology and Medicine: Proceedings of the 5th European Conference for Mathematics and Theoretical Biology Conference, 2002. |
[37] |
M. S. McAfree and O. Annunziata,
Cross-diffusion in a colloid-polymer aqueous system, Fluid Phase Equilibria, 356 (2013), 46-55.
|
[38] |
J. D. Murray, Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York. Third edition. Spatial models and biomedical applications, 2003. |
[39] |
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.
doi: 10.1007/b98879. |
[40] |
I. Prigogine and R. Lefever,
Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695-1700.
|
[41] |
F. Rossi, V. K. Vanag, E. Tiezzi and I. R. Epstein,
Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction, The Journal of Physical Chemistry B, 114 (2010), 8140-8146.
|
[42] |
R. Ruiz-Baier and C. Tian,
Mathematical analysis and numerical simulation of pattern formation under cross-diffusion, Nonlinear Analysis: Real World Applications, 14 (2013), 601-612.
doi: 10.1016/j.nonrwa.2012.07.020. |
[43] |
A. Schmidt and K. G. Siebert, Design of Adaptive Element Software - The Finite Element Toolbox ALBERTA, vol. 42 of Lecture Notes in Computational Science and Engineering, Springer, 2005. |
[44] |
J. Schnakenberg,
Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[45] |
J. A. Sethian, Level Set Methods and Fast Marching Methods, volume 3 of Cam- bridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, second edition. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999. |
[46] |
L. Tian, Z. Lin and M. Pedersen,
Instability induced by cross-diffusion in reaction-diffusion systems, Nonlinear Analysis: Real World Applications, 11 (2010), 1036-1045.
doi: 10.1016/j.nonrwa.2009.01.043. |
[47] |
A. Turing,
On the chemical basis of morphogenesis, Phil. Trans. Royal Soc. B., 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[48] |
V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction diffusion systems Physical Chemistry Chemical Physics, 17 (2007), 037110, 11 pp.
doi: 10.1063/1.2752494. |
[49] |
A. Vergara, F. Capuano, L. Paduano and R. Sartorio,
Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol), Macromolecules, 39 (2006), 4500-4506.
|
[50] |
Z. Xie,
Cross-diffusion induced Turing instability for a three species food chain model, J. Math. Analy. and Appl., 388 (2012), 539-547.
doi: 10.1016/j.jmaa.2011.10.054. |
[51] |
A. M. Zhabotinsky,
A history of chemical oscillations and waves, Chaos, 1 (1991), 379-386.
|
[52] |
J.-F. Zhang, W.-T. Li, Wang, (2011). Turing patterns of a strongly coupled predator-prey system with diffusion effects, Nonlinear Analysis, 74 (2001), 847–858.
doi: 10.1016/j.na.2010.09.035. |
[53] |
E. P. Zemskov, V. K. Vanag and I. R. Epstein, Amplitude equations for reaction-diffusion systems with cross-diffusion. Phys. Rev. E., 84 (2011), 036216. |
show all references
References:
[1] |
W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin and T. D. Young, The deal. ii library, version 8. 1, 2013. arXiv: 1312.2266. |
[2] |
J. Bard and I. Lauder,
How well does Turing's theory of morphogenesis work?, J. Theor. Bio., 45 (1974), 501-531.
|
[3] |
R. Barreira, C. M. Elliott and A. Madzvamuse,
The surface finite element method for pattern formation on evolving biological surfaces, Journal of Math. Bio., 63 (2011), 1095-1119.
doi: 10.1007/s00285-011-0401-0. |
[4] |
F. J. Blom,
Considerations on the spring analogy, Int. J. Numer. Meth. Fluids, 12 (2000), 647-668.
|
[5] |
V. Capasso and D. Liddo,
Asymptotic behaviour of reaction-diffusion systems in population and epidemic models. The role of cross-diffusion, J. Math. Biol., 32 (1994), 453-463.
doi: 10.1007/BF00160168. |
[6] |
V. Capasso and D. Liddo,
Global attractivity for reaction-diffusion systems. The case of nondiagonal diffusion matrices, J. Math. Anal. and App., 177 (1993), 510-529.
doi: 10.1006/jmaa.1993.1274. |
[7] |
M. A. J. Chaplain, M. Ganesh and I. G. Graham,
Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth, J. Math. Biol., 42 (2001), 387-423.
doi: 10.1007/s002850000067. |
[8] |
E. J. Crampin, W. W. Hackborn and P. K. Maini,
Pattern formation in reaction-diffusion models with nonuniform domain growth, Bull. Math. Biol., 64 (2002), 746-769.
|
[9] |
K. Deckelnick, G. Dziuk and C. M. Elliott,
Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14 (2005), 139-232.
doi: 10.1017/S0962492904000224. |
[10] |
A. Donna and C. Helzel,
A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes, SIAM J. Sci. Comput., 31 (2009), 4066-4099.
doi: 10.1137/08073322X. |
[11] |
G. Dziuk and C. M. Elliott,
Surface finite elements for parabolic equations, J. Comp. Math., 25 (2007), 385-407.
|
[12] |
G. Dziuk and C. M. Elliott,
Eulerian finite element method for parabolic PDEs on implicit surfaces, Interfaces Free Bound, 10 (2008), 119-138.
doi: 10.4171/IFB/182. |
[13] |
G. Dziuk and C. M. Elliott,
An Eulerian approach to transport and diffusion on evolving implicit surfaces, Comput. Vis. Sci., 13 (2010), 17-28.
doi: 10.1007/s00791-008-0122-0. |
[14] |
G. Dziuk and C. M. Elliott,
Finite element methods for surface PDEs, Acta Numer., 22 (2013), 289-396.
doi: 10.1017/S0962492913000056. |
[15] |
C. M. Elliott, B. Stinner, V. Styles and R. Welford,
Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J. Numer. Anal., 31 (2011), 786-812.
doi: 10.1093/imanum/drq005. |
[16] |
G. Gambino, M. C. Lombardo and M. Sammartino,
Turing instability and traveling fronts for nonlinear reaction-diffusion system with cross-diffusion, Maths. Comp. in Sim., 82 (2012), 1112-1132.
doi: 10.1016/j.matcom.2011.11.004. |
[17] |
G. Gambino, M. C. Lombardo and M. Sammartino,
Pattern formation driven by cross-diffusion in 2-D domain, Nonlinear Analysis: Real World Applications, 14 (2013), 1755-1779.
doi: 10.1016/j.nonrwa.2012.11.009. |
[18] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
|
[19] |
J. B. Greer, A. L. Bertozzi and G. Sapiro,
Fourth order partial differential equations on general geometries, J. Comput. Phys., 216 (2006), 216-246.
doi: 10.1016/j.jcp.2005.11.031. |
[20] |
G. Hetzer, A. Madzvamuse and W. Shen,
Characterization of Turing diffusion-driven instability on evolving domains, Discrete Cont. Dyn. Syst., 32 (2012), 3975-4000.
doi: 10.3934/dcds.2012.32.3975. |
[21] |
S. E. Hieber and P. Koumoutsakos,
A Lagrangian particle level set method, J. Comput. Phys., 210 (2005), 342-367.
doi: 10.1016/j.jcp.2005.04.013. |
[22] |
M. Iida and M. Mimura,
Diffusion, cross-diffusion an competitive interaction, J. Math. Biol., 53 (2006), 617-641.
doi: 10.1007/s00285-006-0013-2. |
[23] |
S. Kovács,
Turing bifurcation in a system with cross-diffusion, Nonlinear Analysis, 59 (2004), 567-581.
doi: 10.1016/j.na.2004.07.025. |
[24] |
O. Lakkis, A. Madzvamuse and C. Venkataraman,
Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains, SIAM Journal on Numerical Analysis, 51 (2013), 2309-2330.
doi: 10.1137/120880112. |
[25] |
C. B. Macdonald, B. Merriman and S. J. Ruuth,
Simple computation of reaction- diffusion processes on point clouds, Proc. Nat. Acad. Sci. USA., 110 (2013), 9209-9214.
doi: 10.1073/pnas.1221408110. |
[26] |
C. B. Macdonald and S. J. Ruuth,
The implicit closest point method for the numerical solution of partial differential equations on surfaces, SIAM J. Sci. Comput., 31 (2010), 4330-4350.
doi: 10.1137/080740003. |
[27] |
A. Madzvamuse, R. K. Thomas, P. K. Maini and A. J. Wathen,
A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves, Bulletin of Mathematical Biology., 64 (2002), 501-530.
|
[28] |
A. Madzvamuse, P. K. Maini and A. J. Wathen,
A moving grid finite element method applied to a model biological pattern generator, J. Comp. Phys., 190 (2003), 478-500.
doi: 10.1016/S0021-9991(03)00294-8. |
[29] |
A. Madzvamuse, A. J. Wathen and P. K. Maini,
A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sci. Comp., 24 (2005), 247-262.
doi: 10.1007/s10915-004-4617-7. |
[30] |
A. Madzvamuse,
Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Sci. Phys., 216 (2006), 239-263.
doi: 10.1016/j.jcp.2005.09.012. |
[31] |
A. Madzvamuse,
A modified backward Euler scheme for advection-reaction-diffusion systems. Mathematical modeling of biological systems, Mathematical Modeling of Biological Systems, 1 (2007), 183-190.
|
[32] |
A. Madzvamuse, E. A. Gaffney and P. K. Maini,
Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61 (2010), 133-164.
doi: 10.1007/s00285-009-0293-4. |
[33] |
A. Madzvamuse, H. S. Ndakwo and R. Barreira,
Cross-diffusion-driven instability for reaction-diffusion systems: Analysis and simulations, Journal of Math. Bio., 70 (2014), 709-743.
doi: 10.1007/s00285-014-0779-6. |
[34] |
A. Madzvamuse and R. Barreira, Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces, Physical Review E, 90 (2014). 043307-1-043307-14. ISSN 1539-3755. |
[35] |
A. Madzvamuse, H. S. Ndakwo and R. Barreira,
Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion, Discrete and Continuous Dynamical Systems. Series A., 36 (2016), 2133-2170.
doi: 10.3934/dcds.2016.36.2133. |
[36] |
P. K. Maini, E. J. Crampin, A. Madzvamuse, A. J. Wathen and R. D. K. Thomas, Implications of Domain Growth in Morphogenesis, Mathematical Modelling and Computing in Biology and Medicine: Proceedings of the 5th European Conference for Mathematics and Theoretical Biology Conference, 2002. |
[37] |
M. S. McAfree and O. Annunziata,
Cross-diffusion in a colloid-polymer aqueous system, Fluid Phase Equilibria, 356 (2013), 46-55.
|
[38] |
J. D. Murray, Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York. Third edition. Spatial models and biomedical applications, 2003. |
[39] |
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.
doi: 10.1007/b98879. |
[40] |
I. Prigogine and R. Lefever,
Symmetry breaking instabilities in dissipative systems. Ⅱ, J. Chem. Phys., 48 (1968), 1695-1700.
|
[41] |
F. Rossi, V. K. Vanag, E. Tiezzi and I. R. Epstein,
Quaternary cross-diffusion in water-in-oil microemulsions loaded with a component of the Belousov-Zhabotinsky reaction, The Journal of Physical Chemistry B, 114 (2010), 8140-8146.
|
[42] |
R. Ruiz-Baier and C. Tian,
Mathematical analysis and numerical simulation of pattern formation under cross-diffusion, Nonlinear Analysis: Real World Applications, 14 (2013), 601-612.
doi: 10.1016/j.nonrwa.2012.07.020. |
[43] |
A. Schmidt and K. G. Siebert, Design of Adaptive Element Software - The Finite Element Toolbox ALBERTA, vol. 42 of Lecture Notes in Computational Science and Engineering, Springer, 2005. |
[44] |
J. Schnakenberg,
Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[45] |
J. A. Sethian, Level Set Methods and Fast Marching Methods, volume 3 of Cam- bridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, second edition. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999. |
[46] |
L. Tian, Z. Lin and M. Pedersen,
Instability induced by cross-diffusion in reaction-diffusion systems, Nonlinear Analysis: Real World Applications, 11 (2010), 1036-1045.
doi: 10.1016/j.nonrwa.2009.01.043. |
[47] |
A. Turing,
On the chemical basis of morphogenesis, Phil. Trans. Royal Soc. B., 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[48] |
V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction diffusion systems Physical Chemistry Chemical Physics, 17 (2007), 037110, 11 pp.
doi: 10.1063/1.2752494. |
[49] |
A. Vergara, F. Capuano, L. Paduano and R. Sartorio,
Lysozyme mutual diffusion in solutions crowded by poly(ethylene glycol), Macromolecules, 39 (2006), 4500-4506.
|
[50] |
Z. Xie,
Cross-diffusion induced Turing instability for a three species food chain model, J. Math. Analy. and Appl., 388 (2012), 539-547.
doi: 10.1016/j.jmaa.2011.10.054. |
[51] |
A. M. Zhabotinsky,
A history of chemical oscillations and waves, Chaos, 1 (1991), 379-386.
|
[52] |
J.-F. Zhang, W.-T. Li, Wang, (2011). Turing patterns of a strongly coupled predator-prey system with diffusion effects, Nonlinear Analysis, 74 (2001), 847–858.
doi: 10.1016/j.na.2010.09.035. |
[53] |
E. P. Zemskov, V. K. Vanag and I. R. Epstein, Amplitude equations for reaction-diffusion systems with cross-diffusion. Phys. Rev. E., 84 (2011), 036216. |














Type of growth | Growth Function | ||
Linear | | ||
Exponential | |||
Logistic |
Type of growth | Growth Function | ||
Linear | | ||
Exponential | |||
Logistic |
[1] |
Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133 |
[2] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[3] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010 |
[4] |
Siqing Li, Zhonghua Qiao. A meshless collocation method with a global refinement strategy for reaction-diffusion systems on evolving domains. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 601-617. doi: 10.3934/dcdsb.2021057 |
[5] |
Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4473-4489. doi: 10.3934/dcdsb.2021237 |
[6] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[7] |
Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147 |
[8] |
Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022063 |
[9] |
Georg Hetzer, Anotida Madzvamuse, Wenxian Shen. Characterization of turing diffusion-driven instability on evolving domains. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3975-4000. doi: 10.3934/dcds.2012.32.3975 |
[10] |
Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255 |
[11] |
Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185 |
[12] |
Vandana Sharma, Jyotshana V. Prajapat. Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 109-135. doi: 10.3934/dcds.2021109 |
[13] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[14] |
Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281 |
[15] |
Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062 |
[16] |
Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145 |
[17] |
Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 |
[18] |
Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : i-i. doi: 10.3934/dcdss.20202i |
[19] |
Yaru Hu, Jinfeng Wang. Dynamics of an SIRS epidemic model with cross-diffusion. Communications on Pure and Applied Analysis, 2022, 21 (1) : 315-336. doi: 10.3934/cpaa.2021179 |
[20] |
Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]