
-
Previous Article
Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics
- DCDS-B Home
- This Issue
-
Next Article
Conditioning and relative error propagation in linear autonomous ordinary differential equations
Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems
1. | Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy |
2. | Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy |
Several models in the applied sciences are characterized by instantaneous changes in the solutions or discontinuities in the vector field. Knowledge of the geometry of interaction of the flow with the discontinuities can give new insights on the behaviour of such systems. Here, we focus on the class of the piecewise smooth systems of Filippov type. We describe some numerical techniques to locate crossing and sliding regions on the discontinuity surface, to compute the sets of attraction of these regions together with the mathematical form of the separatrices of such sets. Some numerical tests will illustrate our approach.
References:
[1] |
V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics. Springer-Verlag, Berlin, 2008. |
[2] |
A. Agosti, L. Formaggia and A. Scotti,
Analysis of a model for precipitation and dissolution coupled with a Darcy flux, Journal of Mathematical Analysis and Applications, 431 (2015), 752-781.
doi: 10.1016/j.jmaa.2015.06.003. |
[3] |
A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti, Numerical simulation of geochemical compaction with discontinuous reactions, in Coupled Problems 2015 - Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering, 2015, 300-311. |
[4] |
A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti,
A numerical procedure for geochemical compaction in the presence of discontinuous reaction, Advances in Water Resources, 94 (2016), 332-344.
doi: 10.1016/j.advwatres.2016.06.001. |
[5] |
I. Arango and J. Taborda,
Numerical analysis of sliding dynamics in three-dimensional Filippov systems using SPTI method, International Journal of Mathematical Models and Method in Applied Sciences, 2 (2008), 342-354.
|
[6] |
I. Arango and J. Taborda,
Integration-free analysis of nonsmooth local dynamics in planar Filippov systems, International Journal of Bifurcation and Chaos, 19 (2009), 947-975.
doi: 10.1142/S0218127409023391. |
[7] |
I. Arango and J. Taborda,
Topological classification of limit cycles of piecewise smooth dynamical systems and its associated non-standard bifurcations, Entropy, 16 (2014), 1949-1968.
doi: 10.3390/e16041949. |
[8] |
M. Berardi and L. Lopez,
On the continuous extension of Adams - Bashforth methods and the event location in discontinuous ODEs, Applied Mathematics Letters, 25 (2012), 995-999.
doi: 10.1016/j.aml.2011.11.014. |
[9] |
M.-D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543241.![]() ![]() ![]() |
[10] |
M. Calvo, J. Montijano and L. Rández,
On the solution of discontinuous IVPs by adaptive Runge-Kutta codes, Numerical Algorithms, 33 (2003), 163-182.
doi: 10.1023/A:1025507920426. |
[11] |
M. Calvo, J. I. Montijano and L. Rández,
Algorithm 968: Disode45: A matlab runge-kutta solver for piecewise smooth ivps of filippov type, ACM Trans. Math. Softw., 43 (2017), Art.25, 14 pp.
doi: 10.1145/2907054. |
[12] |
R. Casey, H. deJong and J. Gouze,
Piecewise-linear models of genetics regulatory networks: Equilibria and their stability, Journal Mathematical Biology, 52 (2006), 27-56.
doi: 10.1007/s00285-005-0338-2. |
[13] |
R. Cavoretto, A. DeRossi, E. Perracchione and E. Venturino,
Robust approximation algorithms for the detection of attraction basins in dynamical systems, J. Sci. Comput., 68 (2016), 395-415.
doi: 10.1007/s10915-015-0143-z. |
[14] |
A. Colombo and U. Galvanetto,
Stable manifolds of saddles in piecewise smooth systems, Computer Modeling in Engineering & Sciences, 53 (2009), 235-254.
|
[15] |
A. Colombo and U. Galvanetto, Computation of the basins of attraction in non-smooth dynamical systems, in Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, held Aberdeen, UK, 27-30 July 2010 (eds. M. Wiercigroch and G. Rega), vol. 32, Springer Science, 2013, 17-29. |
[16] |
A. Colombo and M.R. Jeffrey,
Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows, SIAM Journal on Applied Dynamical Systems, 10 (2011), 423-451.
doi: 10.1137/100801846. |
[17] |
A. Colombo and M.R. Jeffrey,
The two-fold singularity of nonsmooth flows: Leading order dynamics in n-dimensions, Physica D, 263 (2013), 1-10.
doi: 10.1016/j.physd.2013.07.015. |
[18] |
N. DelBuono, C. Elia and L. Lopez,
On the equivalence between the sigmoidal approach and Utkin's approach for piecewise-linear models of gene regulatory networks, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1270-1292.
doi: 10.1137/130950483. |
[19] |
N. DelBuono and L. Lopez,
Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Applied Mathematics Letters, 49 (2015), 152-158.
doi: 10.1016/j.aml.2015.05.012. |
[20] |
F. Dercole and Y.A. Kuznetsov,
SlideCont: An Auto97 driver for bifurcation analysis of filippov systems, ACM Trans. Math. Softw., 31 (2005), 95-119.
doi: 10.1145/1055531.1055536. |
[21] |
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet and B. Sautois, MATCONT and CL MATCONT: Continuation toolboxes in Matlab, december 2006 edition, 2006, URL http://www.ricam.oeaw.ac.at/people/page/jameslu/Teaching/MathModelBioSciences_Summer08/EX3/MATCONT_manual.pdf. |
[22] |
A. Dhooge, W. Govaerts and Y.A. Kuznetsov,
MATCONT: A MATLAB package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29 (2003), 141-164.
doi: 10.1145/779359.779362. |
[23] |
L. Dieci, C. Elia and L. Lopez,
Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb R^3$ and implications for stability of periodic orbits, Journal of Nonlinear Science, 25 (2015), 1453-1471.
doi: 10.1007/s00332-015-9265-6. |
[24] |
L. Dieci and L. Lopez,
Fundamental matrix solutions of piecewise smooth differential systems, Mathematics and Computers in Simulation, 81 (2011), 932-953.
doi: 10.1016/j.matcom.2010.10.012. |
[25] |
L. Dieci and L. Lopez,
One-sided direct event location techniques in the numerical solution of discontinuous differential systems, BIT Numerical Mathematics, 55 (2015), 987-1003.
doi: 10.1007/s10543-014-0538-5. |
[26] |
C. Erazo, M. E. Homer, P. T. Piiroinen and M Di Bernardo,
Dynamic cell mapping algorithm for computing basins of attraction in planar filippov systems, International Journal of Bifurcation and Chaos, 27 (2017), 1730041, 15PP.
doi: 10.1142/S0218127417300415. |
[27] |
G. F. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007.
doi: 10.1142/6437. |
[28] |
A. Filippov, Differential Equations with Discontinuous Right Hand Side, Kluwer, Dordrecht, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[29] |
U. Galvanetto,
Computation of the separatrix of basins of attraction in a non-smooth dynamical system, Physica D, 237 (2008), 2263-2271.
doi: 10.1016/j.physd.2008.02.009. |
[30] |
M. Gameiro, J.-P. Lessard and A. Pugliese,
Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions, Foundations of Computational Mathematics, 16 (2016), 531-575.
doi: 10.1007/s10208-015-9259-7. |
[31] |
W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, 2000.
doi: 10.1137/1.9780898719543. |
[32] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05018-7. |
[33] |
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle,
Surface reconstruction from unorganized points, SIGGRAPH Comput. Graph., 26 (1992), 71-78.
doi: 10.1145/133994.134011. |
[34] |
L. Lopez and S. Maset, Time transfomations for the event location of discontinuous ODEs, Math. Comp, Published electronically December 26, 2017
doi: 10.1090/mcom/3305. |
[35] |
J.-M. Melenk and I. Bubuska,
The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., 139 (1996), 289-314.
doi: 10.1016/S0045-7825(96)01087-0. |
[36] |
B.-S. Morse, T.-S. Yoo, P. Rheingans, D.-T. Chen and K.-R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, in Proceedings of International Conference on Shape Modeling and Applications. Genova, Italy May 7-11, 2001, IEEE, 2001, 72-89. |
[37] |
P. T. Piiroinen and Y. A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software, 34 (2008), Art. 13, 24 pp.
doi: 10.1145/1356052.1356054. |
[38] |
E. Plathe and S. Kjoglum,
Analysis and genetic properties of gene regulatory networks with graded response functions, Physica D, 201 (2005), 150-176.
doi: 10.1016/j.physd.2004.11.014. |
[39] |
A. Tornambé,
Modelling and control of impact in mechanical systems: Theory and experimental results, IEEE Trans. Automat. Control, 44 (1999), 294-309.
doi: 10.1109/9.746255. |
[40] |
G. Turk and J. F. O'Brien,
Modelling with implicit surfaces that interpolate, ACM Trans. Graph., 21 (2002), 855-873.
doi: 10.1145/1198555.1198640. |
[41] |
H. Wendland, Scattered Data Approximation. Cambridge Monogr. Appl. Comput. Math., Cambridge Univ. Press, Cambridge, 2005.
![]() ![]() |
[42] |
H. Wendland, Fast evaluation of radial basis functions: Methods based on partition of unity, in Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University Press, 2002, 473-483. |
show all references
References:
[1] |
V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics. Springer-Verlag, Berlin, 2008. |
[2] |
A. Agosti, L. Formaggia and A. Scotti,
Analysis of a model for precipitation and dissolution coupled with a Darcy flux, Journal of Mathematical Analysis and Applications, 431 (2015), 752-781.
doi: 10.1016/j.jmaa.2015.06.003. |
[3] |
A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti, Numerical simulation of geochemical compaction with discontinuous reactions, in Coupled Problems 2015 - Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering, 2015, 300-311. |
[4] |
A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti,
A numerical procedure for geochemical compaction in the presence of discontinuous reaction, Advances in Water Resources, 94 (2016), 332-344.
doi: 10.1016/j.advwatres.2016.06.001. |
[5] |
I. Arango and J. Taborda,
Numerical analysis of sliding dynamics in three-dimensional Filippov systems using SPTI method, International Journal of Mathematical Models and Method in Applied Sciences, 2 (2008), 342-354.
|
[6] |
I. Arango and J. Taborda,
Integration-free analysis of nonsmooth local dynamics in planar Filippov systems, International Journal of Bifurcation and Chaos, 19 (2009), 947-975.
doi: 10.1142/S0218127409023391. |
[7] |
I. Arango and J. Taborda,
Topological classification of limit cycles of piecewise smooth dynamical systems and its associated non-standard bifurcations, Entropy, 16 (2014), 1949-1968.
doi: 10.3390/e16041949. |
[8] |
M. Berardi and L. Lopez,
On the continuous extension of Adams - Bashforth methods and the event location in discontinuous ODEs, Applied Mathematics Letters, 25 (2012), 995-999.
doi: 10.1016/j.aml.2011.11.014. |
[9] |
M.-D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543241.![]() ![]() ![]() |
[10] |
M. Calvo, J. Montijano and L. Rández,
On the solution of discontinuous IVPs by adaptive Runge-Kutta codes, Numerical Algorithms, 33 (2003), 163-182.
doi: 10.1023/A:1025507920426. |
[11] |
M. Calvo, J. I. Montijano and L. Rández,
Algorithm 968: Disode45: A matlab runge-kutta solver for piecewise smooth ivps of filippov type, ACM Trans. Math. Softw., 43 (2017), Art.25, 14 pp.
doi: 10.1145/2907054. |
[12] |
R. Casey, H. deJong and J. Gouze,
Piecewise-linear models of genetics regulatory networks: Equilibria and their stability, Journal Mathematical Biology, 52 (2006), 27-56.
doi: 10.1007/s00285-005-0338-2. |
[13] |
R. Cavoretto, A. DeRossi, E. Perracchione and E. Venturino,
Robust approximation algorithms for the detection of attraction basins in dynamical systems, J. Sci. Comput., 68 (2016), 395-415.
doi: 10.1007/s10915-015-0143-z. |
[14] |
A. Colombo and U. Galvanetto,
Stable manifolds of saddles in piecewise smooth systems, Computer Modeling in Engineering & Sciences, 53 (2009), 235-254.
|
[15] |
A. Colombo and U. Galvanetto, Computation of the basins of attraction in non-smooth dynamical systems, in Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, held Aberdeen, UK, 27-30 July 2010 (eds. M. Wiercigroch and G. Rega), vol. 32, Springer Science, 2013, 17-29. |
[16] |
A. Colombo and M.R. Jeffrey,
Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows, SIAM Journal on Applied Dynamical Systems, 10 (2011), 423-451.
doi: 10.1137/100801846. |
[17] |
A. Colombo and M.R. Jeffrey,
The two-fold singularity of nonsmooth flows: Leading order dynamics in n-dimensions, Physica D, 263 (2013), 1-10.
doi: 10.1016/j.physd.2013.07.015. |
[18] |
N. DelBuono, C. Elia and L. Lopez,
On the equivalence between the sigmoidal approach and Utkin's approach for piecewise-linear models of gene regulatory networks, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1270-1292.
doi: 10.1137/130950483. |
[19] |
N. DelBuono and L. Lopez,
Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Applied Mathematics Letters, 49 (2015), 152-158.
doi: 10.1016/j.aml.2015.05.012. |
[20] |
F. Dercole and Y.A. Kuznetsov,
SlideCont: An Auto97 driver for bifurcation analysis of filippov systems, ACM Trans. Math. Softw., 31 (2005), 95-119.
doi: 10.1145/1055531.1055536. |
[21] |
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet and B. Sautois, MATCONT and CL MATCONT: Continuation toolboxes in Matlab, december 2006 edition, 2006, URL http://www.ricam.oeaw.ac.at/people/page/jameslu/Teaching/MathModelBioSciences_Summer08/EX3/MATCONT_manual.pdf. |
[22] |
A. Dhooge, W. Govaerts and Y.A. Kuznetsov,
MATCONT: A MATLAB package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29 (2003), 141-164.
doi: 10.1145/779359.779362. |
[23] |
L. Dieci, C. Elia and L. Lopez,
Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb R^3$ and implications for stability of periodic orbits, Journal of Nonlinear Science, 25 (2015), 1453-1471.
doi: 10.1007/s00332-015-9265-6. |
[24] |
L. Dieci and L. Lopez,
Fundamental matrix solutions of piecewise smooth differential systems, Mathematics and Computers in Simulation, 81 (2011), 932-953.
doi: 10.1016/j.matcom.2010.10.012. |
[25] |
L. Dieci and L. Lopez,
One-sided direct event location techniques in the numerical solution of discontinuous differential systems, BIT Numerical Mathematics, 55 (2015), 987-1003.
doi: 10.1007/s10543-014-0538-5. |
[26] |
C. Erazo, M. E. Homer, P. T. Piiroinen and M Di Bernardo,
Dynamic cell mapping algorithm for computing basins of attraction in planar filippov systems, International Journal of Bifurcation and Chaos, 27 (2017), 1730041, 15PP.
doi: 10.1142/S0218127417300415. |
[27] |
G. F. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007.
doi: 10.1142/6437. |
[28] |
A. Filippov, Differential Equations with Discontinuous Right Hand Side, Kluwer, Dordrecht, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[29] |
U. Galvanetto,
Computation of the separatrix of basins of attraction in a non-smooth dynamical system, Physica D, 237 (2008), 2263-2271.
doi: 10.1016/j.physd.2008.02.009. |
[30] |
M. Gameiro, J.-P. Lessard and A. Pugliese,
Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions, Foundations of Computational Mathematics, 16 (2016), 531-575.
doi: 10.1007/s10208-015-9259-7. |
[31] |
W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, 2000.
doi: 10.1137/1.9780898719543. |
[32] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05018-7. |
[33] |
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle,
Surface reconstruction from unorganized points, SIGGRAPH Comput. Graph., 26 (1992), 71-78.
doi: 10.1145/133994.134011. |
[34] |
L. Lopez and S. Maset, Time transfomations for the event location of discontinuous ODEs, Math. Comp, Published electronically December 26, 2017
doi: 10.1090/mcom/3305. |
[35] |
J.-M. Melenk and I. Bubuska,
The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., 139 (1996), 289-314.
doi: 10.1016/S0045-7825(96)01087-0. |
[36] |
B.-S. Morse, T.-S. Yoo, P. Rheingans, D.-T. Chen and K.-R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, in Proceedings of International Conference on Shape Modeling and Applications. Genova, Italy May 7-11, 2001, IEEE, 2001, 72-89. |
[37] |
P. T. Piiroinen and Y. A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software, 34 (2008), Art. 13, 24 pp.
doi: 10.1145/1356052.1356054. |
[38] |
E. Plathe and S. Kjoglum,
Analysis and genetic properties of gene regulatory networks with graded response functions, Physica D, 201 (2005), 150-176.
doi: 10.1016/j.physd.2004.11.014. |
[39] |
A. Tornambé,
Modelling and control of impact in mechanical systems: Theory and experimental results, IEEE Trans. Automat. Control, 44 (1999), 294-309.
doi: 10.1109/9.746255. |
[40] |
G. Turk and J. F. O'Brien,
Modelling with implicit surfaces that interpolate, ACM Trans. Graph., 21 (2002), 855-873.
doi: 10.1145/1198555.1198640. |
[41] |
H. Wendland, Scattered Data Approximation. Cambridge Monogr. Appl. Comput. Math., Cambridge Univ. Press, Cambridge, 2005.
![]() ![]() |
[42] |
H. Wendland, Fast evaluation of radial basis functions: Methods based on partition of unity, in Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University Press, 2002, 473-483. |











Separatrix | Point | Interpolared surface value |
Separatrix | Point | Interpolared surface value |
[1] |
Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545 |
[2] |
Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058 |
[3] |
Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102 |
[4] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[5] |
Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129 |
[6] |
Assia Boubidi, Sihem Kechida, Hicham Tebbikh. Analytical study of resonance regions for second kind commensurate fractional systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3579-3594. doi: 10.3934/dcdsb.2020247 |
[7] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Dirichlet problems with a crossing reaction. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2749-2766. doi: 10.3934/cpaa.2014.13.2749 |
[8] |
John Guckenheimer. Continuation methods for principal foliations of embedded surfaces. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022007 |
[9] |
D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889 |
[10] |
Nadezhda Maltugueva, Nikolay Pogodaev. Modeling of crowds in regions with moving obstacles. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5009-5036. doi: 10.3934/dcds.2021066 |
[11] |
Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019 |
[12] |
Hermano Frid. Invariant regions under Lax-Friedrichs scheme for multidimensional systems of conservation laws. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 585-593. doi: 10.3934/dcds.1995.1.585 |
[13] |
Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006 |
[14] |
Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017 |
[15] |
Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014 |
[16] |
Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni. A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5 (3) : 525-544. doi: 10.3934/nhm.2010.5.525 |
[17] |
Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523 |
[18] |
A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273 |
[19] |
Ming-Chia Li, Ming-Jiea Lyu. Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 243-252. doi: 10.3934/dcds.2011.30.243 |
[20] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021264 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]