We develop a stabilization strategy of turning processes by means of delayed spindle control. We show that turning processes which contain intrinsic state-dependent delays can be stabilized by a spindle control with state-dependent delay, and develop analytical description of the stability region in the parameter space. Numerical simulations stability region are also given to illustrate the general results.
Citation: |
Figure 6.
The shaded region shows the details of the stability region of Figure 5 near the origin
[1] | Y. Altintas and E. Budak, Analytical prediction of stability lobes in milling, CIRP Annals - Manufacturing Technology 44, 1 (1995), 357-362. |
[2] | D. Bachrathy, G. Stépán and J. Turi, State dependent regenerative effect in milling processes, J. Comput. Nonlinear Dynam. 6, 4 (2011), Article Number: 041002. doi: 10.1115/1.4003624. |
[3] | B. Balachandran and M. X. Zhao, A mechanics based model for study of dynamics of milling operations, Meccanica, 2 (2000), 89-109. |
[4] | Z. Balanov, Q. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold-type state-dependent delay, J. Differential Equations, 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053. |
[5] | D. E. Gilsinn, Estimating critical hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter, Nonlinear Dynam., 30 (2002), 103-154. doi: 10.1023/A:1020455821894. |
[6] | F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Chapter 5: Functional differential equations with state-dependent delays: Theory and applications. In Handbook of Differential Equations: Ordinary Differential Equations, P. D. A. CaÑada and A. Fonda, Eds., vol. 3. North-Holland, 2006,435–545. doi: 10.1016/S1874-5725(06)80009-X. |
[7] | J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7. |
[8] | Q. Hu, W. Krawcewicz and J. Turi, Stabilization in a state-dependent model of turning processes, SIAM J. Appl. Math., 72 (2012), 1-24. doi: 10.1137/110823468. |
[9] | Q. Hu, W. Krawcewicz and J. Turi, Global stability lobes of a state-dependent model of turning processes, SIAM Journal on Applied Mathematics, 72 (2012), 1383-1405. doi: 10.1137/110859051. |
[10] | T. Insperger and G. Stépán, Stability analysis of turning with periodic spindle speed maching, J. Manuf. Sci. Eng., 122 (2000), 391-397. |
[11] | T. Insperger, G. Stépán and J. Turi, State-dependent delay in regenerative turning processes, Nonlinear Dyn., 47 (2007), 275-283. |
[12] | F. Ismail and E. Soliman, A new method for the identification of stability lobes in machining, Int. J. Mach. Tools Manufacture, 37 (1997), 763-774. |
[13] | F. Koenigsberger and J. Tlusty, Machine Tool Structures, vol. 1. Pergamon Press, 1970. |
[14] | W. Krawcewicz and J. Wu, Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. Johns Wiley & Sons, New York, 1997. |
[15] | X. Long and B. Balachandran, Stability of up-milling and down-milling operations with variable spindle speeds, J. Vibration and Control, 16 (2010), 1151-1168. doi: 10.1177/1077546309341131. |
[16] | A. Otto and G. Radons, The influence of tangential and torsional vibrations on the stability lobes in metal cutting, Nonlinear Dyn., 82 (2015), 1989-2000. |
[17] | M. Pakdemirli and A. G. Ulsoy, Perturbation analysis of spindle speed variation in machine tool chatter, J. Vibration and Control, 3 (1996), 261-278. |
[18] | J. S. Sexton, R. D. Milne and B. J. Stone, A stability analysis of single point machining with varying spindle control, Appl. Math. Modeling, 1 (1977), 310-318. doi: 10.1016/0307-904X(77)90062-2. |
[19] | S. Smith and J. Tlusty, Update on high-speed milling dynamics, ASME Journal of Engineering for Industry, 112 (1990), 142-149. |
[20] | H. Smith, Existence and uniqueness of global solutions for a size-structured population model of an insect population with variable instar duration, Rocky Mountain J. Math., 24 (1994), 311-334. doi: 10.1216/rmjm/1181072468. |
[21] | G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Sci. tech., UK, 1989. |
[22] | E. Stone and S. Campbell, Stability and bifurcation analysis of a nonlinear dde model for drilling, J. Nonlinear Science, 14 (2004), 27-57. doi: 10.1007/s00332-003-0553-1. |
[23] | F. W. Taylor, On the art of cutting metals, Oscillation and Dynamics in Delay Equations, Contemporary Mathematics, 1907. |
[24] | S. A. Tobias, Machine Tool Vibration, Blackie, London, 1965. |
[25] | S. A. Tobias and W. Fishwick, Theory of regenerative machine tool chatter, The Engineer, London, 205 (1958), 199-203. |
[26] | H.-O. Walther, The solution manifold and $C^1$-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: 10.1016/j.jde.2003.07.001. |