-
Previous Article
Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model
- DCDS-B Home
- This Issue
-
Next Article
Stabilization of turning processes using spindle feedback with state-dependent delay
Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type
Laboratory of Analysis and Control of PDEs, Djillali Liabes University, P. O. Box 89, Sidi Bel Abbes 22000, ALGERIA |
We consider the Bresse system with three control boundary conditions of fractional derivative type. We prove the polynomial decay result with an estimation of the decay rates. Our result is established using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov.
References:
[1] |
M. S. Alves, O. Vera, J. M. Rivera and A. Rambaudm, Exponential stability to the bresse system with boundary dissipation conditions, arXiv: 150601657A. |
[2] |
W. Arendt and C. J. K. Batty,
Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[3] |
R. L. Bagley and P. J. Torvik,
A theoretical basis for the application of fractional calculus to
viscoelasticity, J. Rheology., 27 (1983), 201-210.
|
[4] |
R. L. Bagley and P. J. Torvik,
A different approach to the analysis of viscoelastically damped
structures, AIAA J., 21 (1983), 741-748.
|
[5] |
R. L. Bagley and P. J. Torvik,
On the appearance of the fractional derivative in the behavior
of real material, J. Appl. Mech., 51 (1983), 294-298.
doi: 10.1115/1.3167615. |
[6] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[7] |
J. A. C. Bresse,
Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859. |
[8] |
H. Brézis,
Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces De Hilbert, Notas de Matemática (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973. |
[9] |
M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka,
Well-posedness and optimal decay rates
for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459.
doi: 10.1016/j.jde.2007.02.004. |
[10] |
J. U. Choi and R. C. Maccamy,
Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448-464.
doi: 10.1016/0022-247X(89)90120-0. |
[11] |
A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics,
Pitman: Boston, MA, 122 (1985), 161–179. |
[12] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[13] |
V. Komornik,
Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994. |
[14] |
F. Mainardi and E. Bonetti,
The applications of real order derivatives in linear viscoelasticity, Rheol. Acta, 26 (1988), 64-67.
|
[15] |
B. Mbodje,
Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information., 23 (2006), 237-257.
doi: 10.1093/imamci/dni056. |
[16] |
B. Mbodje and G. Montseny,
Boundary fractional derivative control of the wave equation, IEEE Transactions on Automatic Control., 40 (1995), 368-382.
doi: 10.1109/9.341815. |
[17] |
S. A. Messaoudi and M. I. Mustapha,
On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differ. Equ. Appl., 15 (2008), 655-671.
doi: 10.1007/s00030-008-7075-3. |
[18] |
S. A. Messaoudi and M. I. Mustapha,
On the stabilization of the Timochenko system by a
weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047. |
[19] |
J. H. Park and J. R. Kang,
Energy decay of solutions for Timoshenko beam with a weak
non-linear dissipation, IMA J. Appl. Math., 76 (2011), 340-350.
doi: 10.1093/imamat/hxq040. |
[20] |
C.A. Raposo, J. Ferreira, J. Santos and N. N. O. Castro,
Exponential stability for the Timoshenko system with two weak dampings, ppl. Math. Lett., 18 (2005), 535-541.
doi: 10.1016/j.aml.2004.03.017. |
[21] |
Z. Liu and B. Rao,
Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6. |
[22] |
I. Podlubny,
Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press. |
[23] |
J. Pruss,
On the spectrum of C0-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
doi: 10.2307/1999112. |
[24] |
J. A. Soriano, W. Charles and R. Schulz,
Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.
doi: 10.1016/j.jmaa.2013.10.019. |
[25] |
C. Wagschal,
Fonctions Holomorphes - Equations Différentielles : Exercices Corrigés, Herman, Paris, 2003. |
show all references
References:
[1] |
M. S. Alves, O. Vera, J. M. Rivera and A. Rambaudm, Exponential stability to the bresse system with boundary dissipation conditions, arXiv: 150601657A. |
[2] |
W. Arendt and C. J. K. Batty,
Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3. |
[3] |
R. L. Bagley and P. J. Torvik,
A theoretical basis for the application of fractional calculus to
viscoelasticity, J. Rheology., 27 (1983), 201-210.
|
[4] |
R. L. Bagley and P. J. Torvik,
A different approach to the analysis of viscoelastically damped
structures, AIAA J., 21 (1983), 741-748.
|
[5] |
R. L. Bagley and P. J. Torvik,
On the appearance of the fractional derivative in the behavior
of real material, J. Appl. Mech., 51 (1983), 294-298.
doi: 10.1115/1.3167615. |
[6] |
A. Borichev and Y. Tomilov,
Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0. |
[7] |
J. A. C. Bresse,
Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859. |
[8] |
H. Brézis,
Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces De Hilbert, Notas de Matemática (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973. |
[9] |
M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka,
Well-posedness and optimal decay rates
for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459.
doi: 10.1016/j.jde.2007.02.004. |
[10] |
J. U. Choi and R. C. Maccamy,
Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448-464.
doi: 10.1016/0022-247X(89)90120-0. |
[11] |
A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics,
Pitman: Boston, MA, 122 (1985), 161–179. |
[12] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[13] |
V. Komornik,
Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994. |
[14] |
F. Mainardi and E. Bonetti,
The applications of real order derivatives in linear viscoelasticity, Rheol. Acta, 26 (1988), 64-67.
|
[15] |
B. Mbodje,
Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information., 23 (2006), 237-257.
doi: 10.1093/imamci/dni056. |
[16] |
B. Mbodje and G. Montseny,
Boundary fractional derivative control of the wave equation, IEEE Transactions on Automatic Control., 40 (1995), 368-382.
doi: 10.1109/9.341815. |
[17] |
S. A. Messaoudi and M. I. Mustapha,
On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differ. Equ. Appl., 15 (2008), 655-671.
doi: 10.1007/s00030-008-7075-3. |
[18] |
S. A. Messaoudi and M. I. Mustapha,
On the stabilization of the Timochenko system by a
weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047. |
[19] |
J. H. Park and J. R. Kang,
Energy decay of solutions for Timoshenko beam with a weak
non-linear dissipation, IMA J. Appl. Math., 76 (2011), 340-350.
doi: 10.1093/imamat/hxq040. |
[20] |
C.A. Raposo, J. Ferreira, J. Santos and N. N. O. Castro,
Exponential stability for the Timoshenko system with two weak dampings, ppl. Math. Lett., 18 (2005), 535-541.
doi: 10.1016/j.aml.2004.03.017. |
[21] |
Z. Liu and B. Rao,
Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6. |
[22] |
I. Podlubny,
Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press. |
[23] |
J. Pruss,
On the spectrum of C0-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
doi: 10.2307/1999112. |
[24] |
J. A. Soriano, W. Charles and R. Schulz,
Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.
doi: 10.1016/j.jmaa.2013.10.019. |
[25] |
C. Wagschal,
Fonctions Holomorphes - Equations Différentielles : Exercices Corrigés, Herman, Paris, 2003. |
[1] |
Toufik Bentrcia, Abdelaziz Mennouni. On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022090 |
[2] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Saeed M. Ali. New stability result for a Bresse system with one infinite memory in the shear angle equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 995-1014. doi: 10.3934/dcdss.2021086 |
[3] |
Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 |
[4] |
Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control and Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359 |
[5] |
Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 |
[6] |
Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040 |
[7] |
Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156 |
[8] |
Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209 |
[9] |
Karim El Mufti, Rania Yahia. Polynomial stability in viscoelastic network of strings. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1421-1438. doi: 10.3934/dcdss.2022073 |
[10] |
Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371 |
[11] |
Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008 |
[12] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[13] |
Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic and Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035 |
[14] |
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 |
[15] |
Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125 |
[16] |
Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733 |
[17] |
Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111 |
[18] |
Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59 |
[19] |
Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control and Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049 |
[20] |
Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]