• Previous Article
    Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model
  • DCDS-B Home
  • This Issue
  • Next Article
    Stabilization of turning processes using spindle feedback with state-dependent delay
December  2018, 23(10): 4361-4395. doi: 10.3934/dcdsb.2018168

Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type

Laboratory of Analysis and Control of PDEs, Djillali Liabes University, P. O. Box 89, Sidi Bel Abbes 22000, ALGERIA

Received  March 2017 Revised  January 2018 Published  June 2018

We consider the Bresse system with three control boundary conditions of fractional derivative type. We prove the polynomial decay result with an estimation of the decay rates. Our result is established using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov.

Citation: Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168
References:
[1]

M. S. Alves, O. Vera, J. M. Rivera and A. Rambaudm, Exponential stability to the bresse system with boundary dissipation conditions, arXiv: 150601657A. Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[3]

R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheology., 27 (1983), 201-210.   Google Scholar

[4]

R. L. Bagley and P. J. Torvik, A different approach to the analysis of viscoelastically damped structures, AIAA J., 21 (1983), 741-748.   Google Scholar

[5]

R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real material, J. Appl. Mech., 51 (1983), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[6]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[7]

J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859. Google Scholar

[8]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces De Hilbert, Notas de Matemática (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973.  Google Scholar

[9]

M. M. CavalcantiV. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459.  doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[10]

J. U. Choi and R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448-464.  doi: 10.1016/0022-247X(89)90120-0.  Google Scholar

[11]

A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, Pitman: Boston, MA, 122 (1985), 161–179.  Google Scholar

[12]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.  doi: 10.1137/0325078.  Google Scholar

[13]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.  Google Scholar

[14]

F. Mainardi and E. Bonetti, The applications of real order derivatives in linear viscoelasticity, Rheol. Acta, 26 (1988), 64-67.   Google Scholar

[15]

B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information., 23 (2006), 237-257.  doi: 10.1093/imamci/dni056.  Google Scholar

[16]

B. Mbodje and G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Transactions on Automatic Control., 40 (1995), 368-382.  doi: 10.1109/9.341815.  Google Scholar

[17]

S. A. Messaoudi and M. I. Mustapha, On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differ. Equ. Appl., 15 (2008), 655-671.  doi: 10.1007/s00030-008-7075-3.  Google Scholar

[18]

S. A. Messaoudi and M. I. Mustapha, On the stabilization of the Timochenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.  doi: 10.1002/mma.1047.  Google Scholar

[19]

J. H. Park and J. R. Kang, Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation, IMA J. Appl. Math., 76 (2011), 340-350.  doi: 10.1093/imamat/hxq040.  Google Scholar

[20]

C.A. RaposoJ. FerreiraJ. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, ppl. Math. Lett., 18 (2005), 535-541.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[21]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.  Google Scholar

[22]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press.  Google Scholar

[23]

J. Pruss, On the spectrum of C0-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[24]

J. A. SorianoW. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.  doi: 10.1016/j.jmaa.2013.10.019.  Google Scholar

[25]

C. Wagschal, Fonctions Holomorphes - Equations Différentielles : Exercices Corrigés, Herman, Paris, 2003. Google Scholar

show all references

References:
[1]

M. S. Alves, O. Vera, J. M. Rivera and A. Rambaudm, Exponential stability to the bresse system with boundary dissipation conditions, arXiv: 150601657A. Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar

[3]

R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheology., 27 (1983), 201-210.   Google Scholar

[4]

R. L. Bagley and P. J. Torvik, A different approach to the analysis of viscoelastically damped structures, AIAA J., 21 (1983), 741-748.   Google Scholar

[5]

R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real material, J. Appl. Mech., 51 (1983), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[6]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[7]

J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859. Google Scholar

[8]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces De Hilbert, Notas de Matemática (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973.  Google Scholar

[9]

M. M. CavalcantiV. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459.  doi: 10.1016/j.jde.2007.02.004.  Google Scholar

[10]

J. U. Choi and R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448-464.  doi: 10.1016/0022-247X(89)90120-0.  Google Scholar

[11]

A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, Pitman: Boston, MA, 122 (1985), 161–179.  Google Scholar

[12]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.  doi: 10.1137/0325078.  Google Scholar

[13]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.  Google Scholar

[14]

F. Mainardi and E. Bonetti, The applications of real order derivatives in linear viscoelasticity, Rheol. Acta, 26 (1988), 64-67.   Google Scholar

[15]

B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information., 23 (2006), 237-257.  doi: 10.1093/imamci/dni056.  Google Scholar

[16]

B. Mbodje and G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Transactions on Automatic Control., 40 (1995), 368-382.  doi: 10.1109/9.341815.  Google Scholar

[17]

S. A. Messaoudi and M. I. Mustapha, On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differ. Equ. Appl., 15 (2008), 655-671.  doi: 10.1007/s00030-008-7075-3.  Google Scholar

[18]

S. A. Messaoudi and M. I. Mustapha, On the stabilization of the Timochenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.  doi: 10.1002/mma.1047.  Google Scholar

[19]

J. H. Park and J. R. Kang, Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation, IMA J. Appl. Math., 76 (2011), 340-350.  doi: 10.1093/imamat/hxq040.  Google Scholar

[20]

C.A. RaposoJ. FerreiraJ. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, ppl. Math. Lett., 18 (2005), 535-541.  doi: 10.1016/j.aml.2004.03.017.  Google Scholar

[21]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.  doi: 10.1007/s00033-008-6122-6.  Google Scholar

[22]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press.  Google Scholar

[23]

J. Pruss, On the spectrum of C0-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[24]

J. A. SorianoW. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.  doi: 10.1016/j.jmaa.2013.10.019.  Google Scholar

[25]

C. Wagschal, Fonctions Holomorphes - Equations Différentielles : Exercices Corrigés, Herman, Paris, 2003. Google Scholar

[1]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[4]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[7]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[8]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[9]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[10]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[11]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[12]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[13]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[14]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[20]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (201)
  • HTML views (363)
  • Cited by (0)

Other articles
by authors

[Back to Top]