• Previous Article
    Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence rate of strong approximations of compound random maps, application to SPDEs
December  2018, 23(10): 4477-4498. doi: 10.3934/dcdsb.2018172

Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities

1. 

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, 610225, Sichuan Province, China

2. 

Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, Chair of Optimization and Control, ul. Lojasiewicza 6, 30-348 Krakow, Poland

* Corresponding author: biao.zeng@outlook.com

Received  May 2017 Revised  January 2018 Published  June 2018

Fund Project: The research is supported by the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262, Special Funds of Guangxi Distinguished Experts Construction Engineering, Guangxi, China, and the International Project cofinanced by the Ministry of Science and Higher Education of Republic of Poland under Grant No. 3792/GGPJ/H2020/2017/0.

The paper investigates an inverse problem for a stationary variational-hemivariational inequality. The solution of the variational-hemivariational inequality is approximated by its penalized version. We prove existence of solutions to inverse problems for both the initial inequality problem and the penalized problem. We show that optimal solutions to the inverse problem for the penalized problem converge, up to a subsequence, when the penalty parameter tends to zero, to an optimal solution of the inverse problem for the initial variational-hemivariational inequality. The results are illustrated by a mathematical model of a nonsmooth contact problem from elasticity.

Citation: Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172
References:
[1]

B. BarabaszS. MigórskiR. Schaefer and M. Paszynski, Multi deme, twin adaptive strategy $hp$-HGS, Inverse Problems in Science and Engineering, 19 (2011), 3-16.  doi: 10.1080/17415977.2010.531477.  Google Scholar

[2]

B. BarabaszE. Gajda-ZagorskaS. MigórskiM. PaszynskiR. Schaefer and M. Smolka, A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science, 24 (2014), 865-886.  doi: 10.2478/amcs-2014-0064.  Google Scholar

[3]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[5]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.  Google Scholar

[6]

M. S. Gockenbach and A. A. Khan, An abstract framework for elliptic inverse problems. Ⅰ. an output least-squares approach, Math. Mech. Solids, 12 (2007), 259-276.  doi: 10.1177/1081286505055758.  Google Scholar

[7]

J. GwinnerB. JadambaA. A. Khan and M. Sama, Identification in variational and quasi-variational inequalities, J. Convex Analysis, 25 (2018), 1-25.   Google Scholar

[8]

W. HanS. Migórski and M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM Journal of Mathematical Analysis, 46 (2014), 3891-3912.  doi: 10.1137/140963248.  Google Scholar

[9]

A. Hasanov, Inverse coefficient problems for potential operators, Inverse Problems, 13 (1997), 1265-1278.  doi: 10.1088/0266-5611/13/5/011.  Google Scholar

[10]

M. Hintermüller, Inverse coefficient problems for variational inequalities: Optimality conditions and numerical realization, M2AN Math. Model. Numer. Anal., 35 (2001), 129-152.  doi: 10.1051/m2an:2001109.  Google Scholar

[11]

B. Jadamba, A. A. Khan and M. Sama, Inverse problems of parameter identification in partial differential equations, in Mathematics in Science and Technology, World Sci. Publ., Hackensack, NJ, 2011,228-258. doi: 10.1142/9789814338820_0009.  Google Scholar

[12]

V. K. Le, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proceedings of the American Mathematical Society, 139 (2011), 1645-1658.  doi: 10.1090/S0002-9939-2010-10594-4.  Google Scholar

[13]

Z. H. Liu and B. Zeng, Optimal control of generalized quasi-variational hemivariational inequalities and its applications, Appl. Math. Optim., 72 (2015), 305-323.  doi: 10.1007/s00245-014-9281-1.  Google Scholar

[14]

S. Manservisi and M. Gunzburger, A variational inequality formulation of an inverse elasticity problem, Applied Numerical Mathematics, 34 (2000), 99-126.  doi: 10.1016/S0168-9274(99)00042-2.  Google Scholar

[15]

S. Migórski, Identification of nonlinear heat transfer laws in problems modeled by hemivariational inequalities, in Inverse Problems in Engineering Mechanics, (eds. M. Tanaka and G. S. Dulikravich), Elsevier, 1998, 27-36. doi: 10.1016/B978-008043319-6/50007-8.  Google Scholar

[16]

S. Migórski, Sensitivity analysis of inverse problems with applications to nonlinear systems, Dynamic Systems and Applications, 8 (1999), 73-88.   Google Scholar

[17]

S. Migórski, Identification coefficient problems for elliptic hemivariational inequalities and applications, in Inverse Problems in Engineering Mechanics II (eds. M. Tanaka and G. S. Dulikravich), Elsevier, 2000. Google Scholar

[18]

S. Migórski, Homogenization technique in inverse problems for boundary hemivariational inequalities, Inverse Problems in Engineering, 11 (2003), 229-242.   Google Scholar

[19]

S. Migórski, Identification of operators in systems governed by second order evolution inclusions with applications to hemivariational inequalities, International Journal of Innovative Computing, Information and Control, 8 (2012), 3845-3862.   Google Scholar

[20]

S. Migórski and A. Ochal, Inverse coefficient problem for elliptic hemivariational inequality, in Nonsmooth/Nonconvex Mechanics, Modeling, Analysis and Numerical Methods (eds. D. Y. Gao et al.), Kluwer Academic Publishers, 50 (2001), 247-261. doi: 10.1007/978-1-4613-0275-9_11.  Google Scholar

[21]

S. Migórski and A. Ochal, An inverse coefficient problem for a parabolic hemivariational inequality, Applicable Analysis, 89 (2010), 243-256.  doi: 10.1080/00036810902889559.  Google Scholar

[22]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26 Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[23]

S. MigórskiA. Ochal and M. Sofonea, A class of variational-hemivariational inequalities in reflexive Banach spaces, J. Elasticity, 127 (2017), 151-178.  doi: 10.1007/s10659-016-9600-7.  Google Scholar

[24]

S. Migórski and B. Zeng, Variational-hemivariational inverse problems for unilateral frictional contact, Applicable Analysis, (2018). doi: 10.1080/00036811.2018.1491037.  Google Scholar

[25]

D. Motreanu and M. Sofonea, Quasivariational inequalities and applications in frictional contact problems with normal compliance, Adv. Math. Sci. Appl., 10 (2000), 103-118.   Google Scholar

[26]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1995.  Google Scholar

[27]

P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[28]

M. SofoneaW. Han and S. Migórski, Numerical analysis of history-dependent variational inequalities with applications to contact problems, European Journal of Applied Mathematics, 26 (2015), 427-452.  doi: 10.1017/S095679251500011X.  Google Scholar

[29]

M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398 Cambridge University Press, 2012. doi: 10.1017/CBO9781139104166.  Google Scholar

[30]

M. Sofonea, S. Migórski, Variational-Hemivariational Inequalities with Applications, Chapman & Hall/CRC, Monographs and Research Notes in Mathematics, Boca Raton, 2017. Google Scholar

[31]

M. Sofonea and F. Patrulescu, Penalization of history-dependent variational inequalities, European Journal of Applied Mathematics, 25 (2014), 155-176.  doi: 10.1017/S0956792513000363.  Google Scholar

[32]

E. Zeidler, Nonlinear Functional Analysis and Applications II A/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

B. BarabaszS. MigórskiR. Schaefer and M. Paszynski, Multi deme, twin adaptive strategy $hp$-HGS, Inverse Problems in Science and Engineering, 19 (2011), 3-16.  doi: 10.1080/17415977.2010.531477.  Google Scholar

[2]

B. BarabaszE. Gajda-ZagorskaS. MigórskiM. PaszynskiR. Schaefer and M. Smolka, A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science, 24 (2014), 865-886.  doi: 10.2478/amcs-2014-0064.  Google Scholar

[3]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[5]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.  Google Scholar

[6]

M. S. Gockenbach and A. A. Khan, An abstract framework for elliptic inverse problems. Ⅰ. an output least-squares approach, Math. Mech. Solids, 12 (2007), 259-276.  doi: 10.1177/1081286505055758.  Google Scholar

[7]

J. GwinnerB. JadambaA. A. Khan and M. Sama, Identification in variational and quasi-variational inequalities, J. Convex Analysis, 25 (2018), 1-25.   Google Scholar

[8]

W. HanS. Migórski and M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM Journal of Mathematical Analysis, 46 (2014), 3891-3912.  doi: 10.1137/140963248.  Google Scholar

[9]

A. Hasanov, Inverse coefficient problems for potential operators, Inverse Problems, 13 (1997), 1265-1278.  doi: 10.1088/0266-5611/13/5/011.  Google Scholar

[10]

M. Hintermüller, Inverse coefficient problems for variational inequalities: Optimality conditions and numerical realization, M2AN Math. Model. Numer. Anal., 35 (2001), 129-152.  doi: 10.1051/m2an:2001109.  Google Scholar

[11]

B. Jadamba, A. A. Khan and M. Sama, Inverse problems of parameter identification in partial differential equations, in Mathematics in Science and Technology, World Sci. Publ., Hackensack, NJ, 2011,228-258. doi: 10.1142/9789814338820_0009.  Google Scholar

[12]

V. K. Le, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proceedings of the American Mathematical Society, 139 (2011), 1645-1658.  doi: 10.1090/S0002-9939-2010-10594-4.  Google Scholar

[13]

Z. H. Liu and B. Zeng, Optimal control of generalized quasi-variational hemivariational inequalities and its applications, Appl. Math. Optim., 72 (2015), 305-323.  doi: 10.1007/s00245-014-9281-1.  Google Scholar

[14]

S. Manservisi and M. Gunzburger, A variational inequality formulation of an inverse elasticity problem, Applied Numerical Mathematics, 34 (2000), 99-126.  doi: 10.1016/S0168-9274(99)00042-2.  Google Scholar

[15]

S. Migórski, Identification of nonlinear heat transfer laws in problems modeled by hemivariational inequalities, in Inverse Problems in Engineering Mechanics, (eds. M. Tanaka and G. S. Dulikravich), Elsevier, 1998, 27-36. doi: 10.1016/B978-008043319-6/50007-8.  Google Scholar

[16]

S. Migórski, Sensitivity analysis of inverse problems with applications to nonlinear systems, Dynamic Systems and Applications, 8 (1999), 73-88.   Google Scholar

[17]

S. Migórski, Identification coefficient problems for elliptic hemivariational inequalities and applications, in Inverse Problems in Engineering Mechanics II (eds. M. Tanaka and G. S. Dulikravich), Elsevier, 2000. Google Scholar

[18]

S. Migórski, Homogenization technique in inverse problems for boundary hemivariational inequalities, Inverse Problems in Engineering, 11 (2003), 229-242.   Google Scholar

[19]

S. Migórski, Identification of operators in systems governed by second order evolution inclusions with applications to hemivariational inequalities, International Journal of Innovative Computing, Information and Control, 8 (2012), 3845-3862.   Google Scholar

[20]

S. Migórski and A. Ochal, Inverse coefficient problem for elliptic hemivariational inequality, in Nonsmooth/Nonconvex Mechanics, Modeling, Analysis and Numerical Methods (eds. D. Y. Gao et al.), Kluwer Academic Publishers, 50 (2001), 247-261. doi: 10.1007/978-1-4613-0275-9_11.  Google Scholar

[21]

S. Migórski and A. Ochal, An inverse coefficient problem for a parabolic hemivariational inequality, Applicable Analysis, 89 (2010), 243-256.  doi: 10.1080/00036810902889559.  Google Scholar

[22]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26 Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[23]

S. MigórskiA. Ochal and M. Sofonea, A class of variational-hemivariational inequalities in reflexive Banach spaces, J. Elasticity, 127 (2017), 151-178.  doi: 10.1007/s10659-016-9600-7.  Google Scholar

[24]

S. Migórski and B. Zeng, Variational-hemivariational inverse problems for unilateral frictional contact, Applicable Analysis, (2018). doi: 10.1080/00036811.2018.1491037.  Google Scholar

[25]

D. Motreanu and M. Sofonea, Quasivariational inequalities and applications in frictional contact problems with normal compliance, Adv. Math. Sci. Appl., 10 (2000), 103-118.   Google Scholar

[26]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1995.  Google Scholar

[27]

P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-51677-1.  Google Scholar

[28]

M. SofoneaW. Han and S. Migórski, Numerical analysis of history-dependent variational inequalities with applications to contact problems, European Journal of Applied Mathematics, 26 (2015), 427-452.  doi: 10.1017/S095679251500011X.  Google Scholar

[29]

M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398 Cambridge University Press, 2012. doi: 10.1017/CBO9781139104166.  Google Scholar

[30]

M. Sofonea, S. Migórski, Variational-Hemivariational Inequalities with Applications, Chapman & Hall/CRC, Monographs and Research Notes in Mathematics, Boca Raton, 2017. Google Scholar

[31]

M. Sofonea and F. Patrulescu, Penalization of history-dependent variational inequalities, European Journal of Applied Mathematics, 25 (2014), 155-176.  doi: 10.1017/S0956792513000363.  Google Scholar

[32]

E. Zeidler, Nonlinear Functional Analysis and Applications II A/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

Figure 1.  Outline of the paper
[1]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[2]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[3]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[7]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[9]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[10]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[13]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[16]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[17]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (151)
  • HTML views (409)
  • Cited by (0)

Other articles
by authors

[Back to Top]