December  2018, 23(10): 4557-4578. doi: 10.3934/dcdsb.2018176

A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment

School of Mathematics and Statistics, Lanzhou University, and Key Laboratory of Applied Mathematics and Complex Systems of Gansu province, Lanzhou, Gansu 730000, China

* Corresponding author: Zhi-Cheng Wang

Received  September 2017 Revised  February 2018 Published  December 2018 Early access  June 2018

In this paper, we study the effects of diffusion and advection for an SIS epidemic reaction-diffusion-advection model in a spatially and temporally heterogeneous environment. We introduce the basic reproduction number $\mathcal{R}_{0}$ and establish the threshold-type results on the global dynamics in terms of $\mathcal{R}_{0}$. Some general qualitative properties of $\mathcal{R}_{0}$ are presented, then the paper is devoted to studying how the advection and diffusion of the infected individuals affect the reproduction number $\mathcal{R}_{0}$ for the special case that $γ(x,t)-β(x,t) = V(x,t)$ is monotone with respect to spatial variable $x$. Our results suggest that if $V_{x}(x,t)≥0,\not\equiv0$ and $V(x, t)$ changes sign about $x$, the advection is beneficial to eliminate the disease, whereas if $V_{x}(x,t)≤0,\not\equiv0$ and $V(x, t)$ changes sign about $x$, the advection is bad for the elimination of disease.

Citation: Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176
References:
[1]

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations, 33 (1979), 201-225.  doi: 10.1016/0022-0396(79)90088-3.  Google Scholar

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.  doi: 10.1137/060672522.  Google Scholar

[3]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[4]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[5]

R. CuiK.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.  Google Scholar

[6]

K. A. DahmenD. R. Nelson and N. M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41 (2000), 1-23.  doi: 10.1007/s002850000025.  Google Scholar

[7]

J. GeK. I. KimZ.-G. Lin and H.-P. Zhu, An SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[10]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity,, Pitman Res. Notes Math., vol. 247, Longman Scientific & Technical, Harlow, 1991.  Google Scholar

[11]

W. HuangM. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.  Google Scholar

[12]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[13]

H.-C. LiR. Peng and F.-B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[14]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.  Google Scholar

[15]

F. LutscherE. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol., 71 (2007), 267-277.  doi: 10.1016/j.tpb.2006.11.006.  Google Scholar

[16]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.  Google Scholar

[17]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[18]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.  Google Scholar

[19]

R. Peng and S.-Q. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[20]

R. Peng and F.-Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.  Google Scholar

[21]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[22]

R. Peng and X.-Q. Zhao, Effects of diffusion and advection on the principal eigenvalue of a periodic parabolic problem with applications, Calc. Var. Partial Differential Equations, 54 (2015), 1611-1642.  doi: 10.1007/s00526-015-0838-x.  Google Scholar

[23]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., vol. 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[25]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential. Equations, 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[26]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of Dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.  Google Scholar

[27]

X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Canad. Appl. Math. Quart., 3 (1995), 473-495.   Google Scholar

[28]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differential Equations, 33 (1979), 201-225.  doi: 10.1016/0022-0396(79)90088-3.  Google Scholar

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.  doi: 10.1137/060672522.  Google Scholar

[3]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[4]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[5]

R. CuiK.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.  Google Scholar

[6]

K. A. DahmenD. R. Nelson and N. M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41 (2000), 1-23.  doi: 10.1007/s002850000025.  Google Scholar

[7]

J. GeK. I. KimZ.-G. Lin and H.-P. Zhu, An SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[10]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity,, Pitman Res. Notes Math., vol. 247, Longman Scientific & Technical, Harlow, 1991.  Google Scholar

[11]

W. HuangM. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.  doi: 10.3934/mbe.2010.7.51.  Google Scholar

[12]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[13]

H.-C. LiR. Peng and F.-B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[14]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.  Google Scholar

[15]

F. LutscherE. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol., 71 (2007), 267-277.  doi: 10.1016/j.tpb.2006.11.006.  Google Scholar

[16]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.  Google Scholar

[17]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[18]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.  Google Scholar

[19]

R. Peng and S.-Q. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[20]

R. Peng and F.-Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.  Google Scholar

[21]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[22]

R. Peng and X.-Q. Zhao, Effects of diffusion and advection on the principal eigenvalue of a periodic parabolic problem with applications, Calc. Var. Partial Differential Equations, 54 (2015), 1611-1642.  doi: 10.1007/s00526-015-0838-x.  Google Scholar

[23]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., vol. 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[25]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential. Equations, 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[26]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of Dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.  Google Scholar

[27]

X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Canad. Appl. Math. Quart., 3 (1995), 473-495.   Google Scholar

[28]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[2]

Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021174

[3]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[4]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[5]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[6]

Yachun Tong, Inkyung Ahn, Zhigui Lin. Effect of diffusion in a spatial SIS epidemic model with spontaneous infection. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4045-4057. doi: 10.3934/dcdsb.2020273

[7]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[8]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[9]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[10]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[11]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[12]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

[13]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[14]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[15]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[16]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[17]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021170

[18]

W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35

[19]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (359)
  • HTML views (397)
  • Cited by (0)

Other articles
by authors

[Back to Top]