February  2019, 24(2): 449-465. doi: 10.3934/dcdsb.2018181

Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Xiaohu Wang, wangxiaohu@scu.edu.cn

Received  November 2017 Revised  January 2018 Published  June 2018

Fund Project: This work was supported by NSFC (11271270, 11601446 and 11331007) and Excellent Youth Scholars of Sichuan University (2016SCU04A15).

In this paper, we investigate the asymptotic behavior for non-autonomous stochastic complex Ginzburg-Landau equations with multiplicative noise on thin domains. For this aim, we first show that the existence and uniqueness of random attractors for the considered equations and the limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse onto an interval.

Citation: Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181
References:
[1]

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302.  doi: 10.12775/TMNA.2001.035.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

J. ArrietaA. CarvalhoM. Pereira and R. P. Da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132.  doi: 10.1016/j.na.2011.05.006.  Google Scholar

[4]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[6]

T. CaraballoI. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2007), 1489-1507.  doi: 10.1137/050647281.  Google Scholar

[7]

I. D. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008), 117-153.  doi: 10.1007/s00205-007-0068-2.  Google Scholar

[8]

I. D. Chueshov and S. Kuksin, Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation, Physica D, 237 (2008), 1352-1367.  doi: 10.1016/j.physd.2008.03.012.  Google Scholar

[9]

I. Ciuperca, Reaction-diffusion equations on thin domains with varying order of thinness, J. Differential Equations, 126 (1996), 244-291.  doi: 10.1006/jdeq.1996.0051.  Google Scholar

[10]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[11]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[13]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci., 1 (2003), 133-151.  doi: 10.4310/CMS.2003.v1.n1.a9.  Google Scholar

[14]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[15]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.   Google Scholar

[16]

J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.  doi: 10.1017/S0308210500028043.  Google Scholar

[17]

R. JohnsonM. Kamenskii and P. Nistri, Existence of periodic solutions of an autonomous damped wave equation in thin domains, J. Dynam. Differential Equations, 10 (1998), 409-424.  doi: 10.1023/A:1022601213052.  Google Scholar

[18]

P. E. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. London, Ser. A, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[19]

S. LüH. Lu and Z. Feng, Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 575-590.  doi: 10.3934/dcdsb.2016.21.575.  Google Scholar

[20]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.  doi: 10.1007/s10884-010-9186-x.  Google Scholar

[21]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[22]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.  Google Scholar

[23]

Y. Morita, Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain, Japan J. Indust. Appl. Math., 21 (2004), 129-147.  doi: 10.1007/BF03167468.  Google Scholar

[24]

M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems, Ⅱ, Topol. Methods Nonlinear Anal., 19 (2002), 199-219.  doi: 10.12775/TMNA.2002.010.  Google Scholar

[25]

M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differential Equations, 237 (2001), 271-320.  doi: 10.1006/jdeq.2000.3917.  Google Scholar

[26]

G. Raugel, Dynamics of partial differential equations on thin domains, Dynamical Systems (Montecatini Terme, 1994), 208-315, Lecture Notes in Math., 1609, Springer, Berlin, 1995. doi: 10.1007/BFb0095241.  Google Scholar

[27]

G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. Ⅰ. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.  doi: 10.2307/2152776.  Google Scholar

[28]

A. Rodriguez-BernalB. Wang and R. Willie, Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity, Math. Meth. Appl. Sci., 22 (1999), 1647-1669.  doi: 10.1002/(SICI)1099-1476(199912)22:18<1647::AID-MMA97>3.0.CO;2-W.  Google Scholar

[29]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 1992,185-192. Google Scholar

[30]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[31]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[32]

G. WangB. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.  doi: 10.1016/j.amc.2007.09.029.  Google Scholar

[33]

X. WangK. Lu and B. Wang, Long term behavior of delay parabolic equations with additive noise and deterministic time dependent forcing, SIAM J. Appl. Dynam. Syst., 14 (2015), 1018-1047.  doi: 10.1137/140991819.  Google Scholar

[34]

Z. Wang and S. Zhou, Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 37 (2017), 2787-2812.  doi: 10.3934/dcds.2017120.  Google Scholar

[35]

D. Yang, The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise, J. Math. Phys., 45 (2004), 4064-4076.  doi: 10.1063/1.1794365.  Google Scholar

show all references

References:
[1]

F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 18 (2001), 283-302.  doi: 10.12775/TMNA.2001.035.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

J. ArrietaA. CarvalhoM. Pereira and R. P. Da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 74 (2011), 5111-5132.  doi: 10.1016/j.na.2011.05.006.  Google Scholar

[4]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.  Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[6]

T. CaraballoI. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2007), 1489-1507.  doi: 10.1137/050647281.  Google Scholar

[7]

I. D. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal., 188 (2008), 117-153.  doi: 10.1007/s00205-007-0068-2.  Google Scholar

[8]

I. D. Chueshov and S. Kuksin, Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation, Physica D, 237 (2008), 1352-1367.  doi: 10.1016/j.physd.2008.03.012.  Google Scholar

[9]

I. Ciuperca, Reaction-diffusion equations on thin domains with varying order of thinness, J. Differential Equations, 126 (1996), 244-291.  doi: 10.1006/jdeq.1996.0051.  Google Scholar

[10]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[11]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[13]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci., 1 (2003), 133-151.  doi: 10.4310/CMS.2003.v1.n1.a9.  Google Scholar

[14]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[15]

J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71 (1992), 33-95.   Google Scholar

[16]

J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.  doi: 10.1017/S0308210500028043.  Google Scholar

[17]

R. JohnsonM. Kamenskii and P. Nistri, Existence of periodic solutions of an autonomous damped wave equation in thin domains, J. Dynam. Differential Equations, 10 (1998), 409-424.  doi: 10.1023/A:1022601213052.  Google Scholar

[18]

P. E. Kloeden and J. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. London, Ser. A, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[19]

S. LüH. Lu and Z. Feng, Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 575-590.  doi: 10.3934/dcdsb.2016.21.575.  Google Scholar

[20]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.  doi: 10.1007/s10884-010-9186-x.  Google Scholar

[21]

D. LiB. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.  doi: 10.1016/j.jde.2016.10.024.  Google Scholar

[22]

D. LiK. LuB. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.  doi: 10.3934/dcds.2018009.  Google Scholar

[23]

Y. Morita, Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain, Japan J. Indust. Appl. Math., 21 (2004), 129-147.  doi: 10.1007/BF03167468.  Google Scholar

[24]

M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems, Ⅱ, Topol. Methods Nonlinear Anal., 19 (2002), 199-219.  doi: 10.12775/TMNA.2002.010.  Google Scholar

[25]

M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differential Equations, 237 (2001), 271-320.  doi: 10.1006/jdeq.2000.3917.  Google Scholar

[26]

G. Raugel, Dynamics of partial differential equations on thin domains, Dynamical Systems (Montecatini Terme, 1994), 208-315, Lecture Notes in Math., 1609, Springer, Berlin, 1995. doi: 10.1007/BFb0095241.  Google Scholar

[27]

G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. Ⅰ. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6 (1993), 503-568.  doi: 10.2307/2152776.  Google Scholar

[28]

A. Rodriguez-BernalB. Wang and R. Willie, Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity, Math. Meth. Appl. Sci., 22 (1999), 1647-1669.  doi: 10.1002/(SICI)1099-1476(199912)22:18<1647::AID-MMA97>3.0.CO;2-W.  Google Scholar

[29]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 1992,185-192. Google Scholar

[30]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[31]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[32]

G. WangB. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.  doi: 10.1016/j.amc.2007.09.029.  Google Scholar

[33]

X. WangK. Lu and B. Wang, Long term behavior of delay parabolic equations with additive noise and deterministic time dependent forcing, SIAM J. Appl. Dynam. Syst., 14 (2015), 1018-1047.  doi: 10.1137/140991819.  Google Scholar

[34]

Z. Wang and S. Zhou, Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 37 (2017), 2787-2812.  doi: 10.3934/dcds.2017120.  Google Scholar

[35]

D. Yang, The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise, J. Math. Phys., 45 (2004), 4064-4076.  doi: 10.1063/1.1794365.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (138)
  • HTML views (442)
  • Cited by (2)

Other articles
by authors

[Back to Top]