
-
Previous Article
Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system
- DCDS-B Home
- This Issue
-
Next Article
Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains
Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity
1. | School of Mathematical Sciences, Tongji University, Shanghai 200092, China |
2. | Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795, USA |
3. | Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China |
In this paper, we study the Hopf bifurcation and spatiotemporal pattern formation of a delayed diffusive logistic model under Neumann boundary condition with spatial heterogeneity. It is shown that for large diffusion coefficient, a supercritical Hopf bifurcation occurs near the non-homogeneous positive steady state at a critical time delay value, and the dependence of corresponding spatiotemporal patterns on the heterogeneous resource function is demonstrated via numerical simulations. Moreover, it is proved that the heterogeneous resource supply contributes to the increase of the temporal average of total biomass of the population even though the total biomass oscillates periodically in time.
References:
[1] |
N. F. Britton,
Aggregation and the competitive exclusion principle, J. Theoret. Biol., 136 (1989), 57-66.
doi: 10.1016/S0022-5193(89)80189-4. |
[2] |
S. Busenberg and W. Z. Huang,
Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.
doi: 10.1006/jdeq.1996.0003. |
[3] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[4] |
R. S. Cantrell and C. Cosner,
On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122. |
[5] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[6] |
R. S. Cantrell, C. Cosner and V. Hutson,
Ecological models, permanence and spatial heterogeneity, Rocky Mountain J. Math., 26 (1996), 1-35.
doi: 10.1216/rmjm/1181072101. |
[7] |
R. S. Cantrell, C. Cosner and Y. Lou,
Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations, 245 (2008), 3687-3703.
doi: 10.1016/j.jde.2008.07.024. |
[8] |
S. S. Chen, Y. Lou and J. J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differential Equations, 264 (2018), 5333-5359, arXiv: 1706.02087.
doi: 10.1016/j.jde.2018.01.008. |
[9] |
S. S. Chen and J. P. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[10] |
D. L. DeAngelis, W. M. Ni and B. Zhang,
Dispersal and spatial heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.
doi: 10.1007/s00285-015-0879-y. |
[11] |
T. Faria,
Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.
doi: 10.1090/S0002-9947-00-02280-7. |
[12] |
T. Faria and W. Z. Huang, Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, In Differential Equations and Dynamical Systems (Lisbon, 2000), volume 31 of Fields Inst. Commun., pages 125-141. Amer. Math. Soc., Providence, RI, 2002. |
[13] |
S. D. Fretwell and J. S. Calver, On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheoretica, 19 (1969), 37-44. Google Scholar |
[14] |
G. Friesecke,
Convergence to equilibrium for delay-diffusion equations with small delay, J. Dynam. Differential Equations, 5 (1993), 89-103.
doi: 10.1007/BF01063736. |
[15] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[16] |
S. J. Guo,
Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 259 (2015), 1409-1448.
doi: 10.1016/j.jde.2015.03.006. |
[17] |
S. J. Guo and L. Ma,
Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.
doi: 10.1007/s00332-016-9285-x. |
[18] |
M. E. Gurtin and R. C. MacCamy,
On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49.
doi: 10.1016/0025-5564(77)90062-1. |
[19] |
X. Q. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[20] |
X. Q. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: The general case, J. Differential Equations, 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[21] |
X. Q. He and W. M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Comm. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[22] |
X. Q. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20pp.
doi: 10.1007/s00526-016-0964-0. |
[23] |
G. E. Hutchinson, Circular causal systems in ecology, Annals of the New York Academy of Sciences, 50 (1948), 221-246. Google Scholar |
[24] |
V. Hutson, Y. Lou and K. Mischaikow,
Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Differential Equations, 185 (2002), 97-136.
doi: 10.1006/jdeq.2001.4157. |
[25] |
K. Y. Lam and W. M. Ni,
Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.
doi: 10.1137/120869481. |
[26] |
K.-L. Liao and Y. Lou,
The effect of time delay in a two-patch model with random dispersal, Bull. Math. Biol., 76 (2014), 335-376.
doi: 10.1007/s11538-013-9921-7. |
[27] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[28] |
Y. Lou and F. Lutscher,
Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.
doi: 10.1007/s00285-013-0730-2. |
[29] |
M. C. Memory,
Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.
doi: 10.1137/0520037. |
[30] |
M. Mimura, D. Terman and T. Tsujikawa, Nonlocal advection effect on bistable reactiondiffusion equations, In Patterns and Waves, volume 18 of Stud. Math. Appl., pages 507-542. North-Holland, Amsterdam, 1986.
doi: 10.1016/S0168-2024(08)70144-9. |
[31] |
J. D. Murray, Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications. |
[32] |
S. W. Pacala and J. Roughgarden,
Spatial heterogeneity and interspecific competition, Theoret. Population Biol., 21 (1982), 92-113.
doi: 10.1016/0040-5809(82)90008-9. |
[33] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. |
[34] |
Q. Y. Shi, J. P. Shi and Y. L. Song,
Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition, J. Differential Equations, 263 (2017), 6537-6575.
doi: 10.1016/j.jde.2017.07.024. |
[35] |
N. Shigesada, K. Kawasaki and E. Teramoto,
Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[36] |
Y. Su, J. J. Wei and J. P. Shi,
Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differential Equations, 247 (2009), 1156-1184.
doi: 10.1016/j.jde.2009.04.017. |
[37] |
Y. Su, J. J. Wei and J. P. Shi,
Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.
doi: 10.1007/s10884-012-9268-z. |
[38] |
O. Vasilyeva and F. Lutscher,
Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Q., 18 (2010), 439-469.
|
[39] |
J. H. Wu, Theory and Applications of Partial Functional-Differential Equations, volume 119 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[40] |
X. P. Yan and W. T. Li,
Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model, Nonlinearity, 23 (2010), 1413-1431.
doi: 10.1088/0951-7715/23/6/008. |
[41] |
K. Yoshida,
The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12 (1982), 321-348.
|
[42] |
B. Zhang, X. Liu, D. L. DeAngelis, W. M. Ni and G. G. Wang,
Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.
doi: 10.1016/j.mbs.2015.03.005. |
show all references
References:
[1] |
N. F. Britton,
Aggregation and the competitive exclusion principle, J. Theoret. Biol., 136 (1989), 57-66.
doi: 10.1016/S0022-5193(89)80189-4. |
[2] |
S. Busenberg and W. Z. Huang,
Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.
doi: 10.1006/jdeq.1996.0003. |
[3] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[4] |
R. S. Cantrell and C. Cosner,
On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.
doi: 10.1007/s002850050122. |
[5] |
R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[6] |
R. S. Cantrell, C. Cosner and V. Hutson,
Ecological models, permanence and spatial heterogeneity, Rocky Mountain J. Math., 26 (1996), 1-35.
doi: 10.1216/rmjm/1181072101. |
[7] |
R. S. Cantrell, C. Cosner and Y. Lou,
Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations, 245 (2008), 3687-3703.
doi: 10.1016/j.jde.2008.07.024. |
[8] |
S. S. Chen, Y. Lou and J. J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differential Equations, 264 (2018), 5333-5359, arXiv: 1706.02087.
doi: 10.1016/j.jde.2018.01.008. |
[9] |
S. S. Chen and J. P. Shi,
Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031. |
[10] |
D. L. DeAngelis, W. M. Ni and B. Zhang,
Dispersal and spatial heterogeneity: Single species, J. Math. Biol., 72 (2016), 239-254.
doi: 10.1007/s00285-015-0879-y. |
[11] |
T. Faria,
Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.
doi: 10.1090/S0002-9947-00-02280-7. |
[12] |
T. Faria and W. Z. Huang, Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, In Differential Equations and Dynamical Systems (Lisbon, 2000), volume 31 of Fields Inst. Commun., pages 125-141. Amer. Math. Soc., Providence, RI, 2002. |
[13] |
S. D. Fretwell and J. S. Calver, On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheoretica, 19 (1969), 37-44. Google Scholar |
[14] |
G. Friesecke,
Convergence to equilibrium for delay-diffusion equations with small delay, J. Dynam. Differential Equations, 5 (1993), 89-103.
doi: 10.1007/BF01063736. |
[15] |
S. A. Gourley and J. W.-H. So,
Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.
doi: 10.1007/s002850100109. |
[16] |
S. J. Guo,
Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 259 (2015), 1409-1448.
doi: 10.1016/j.jde.2015.03.006. |
[17] |
S. J. Guo and L. Ma,
Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 26 (2016), 545-580.
doi: 10.1007/s00332-016-9285-x. |
[18] |
M. E. Gurtin and R. C. MacCamy,
On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49.
doi: 10.1016/0025-5564(77)90062-1. |
[19] |
X. Q. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅰ: Heterogeneity vs. homogeneity, J. Differential Equations, 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[20] |
X. Q. He and W. M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system Ⅱ: The general case, J. Differential Equations, 254 (2013), 4088-4108.
doi: 10.1016/j.jde.2013.02.009. |
[21] |
X. Q. He and W. M. Ni,
Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity Ⅰ, Comm. Pure Appl. Math., 69 (2016), 981-1014.
doi: 10.1002/cpa.21596. |
[22] |
X. Q. He and W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Differential Equations, 55 (2016), Art. 25, 20pp.
doi: 10.1007/s00526-016-0964-0. |
[23] |
G. E. Hutchinson, Circular causal systems in ecology, Annals of the New York Academy of Sciences, 50 (1948), 221-246. Google Scholar |
[24] |
V. Hutson, Y. Lou and K. Mischaikow,
Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Differential Equations, 185 (2002), 97-136.
doi: 10.1006/jdeq.2001.4157. |
[25] |
K. Y. Lam and W. M. Ni,
Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.
doi: 10.1137/120869481. |
[26] |
K.-L. Liao and Y. Lou,
The effect of time delay in a two-patch model with random dispersal, Bull. Math. Biol., 76 (2014), 335-376.
doi: 10.1007/s11538-013-9921-7. |
[27] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[28] |
Y. Lou and F. Lutscher,
Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.
doi: 10.1007/s00285-013-0730-2. |
[29] |
M. C. Memory,
Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.
doi: 10.1137/0520037. |
[30] |
M. Mimura, D. Terman and T. Tsujikawa, Nonlocal advection effect on bistable reactiondiffusion equations, In Patterns and Waves, volume 18 of Stud. Math. Appl., pages 507-542. North-Holland, Amsterdam, 1986.
doi: 10.1016/S0168-2024(08)70144-9. |
[31] |
J. D. Murray, Mathematical Biology. II, volume 18 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, third edition, 2003. Spatial models and biomedical applications. |
[32] |
S. W. Pacala and J. Roughgarden,
Spatial heterogeneity and interspecific competition, Theoret. Population Biol., 21 (1982), 92-113.
doi: 10.1016/0040-5809(82)90008-9. |
[33] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. |
[34] |
Q. Y. Shi, J. P. Shi and Y. L. Song,
Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition, J. Differential Equations, 263 (2017), 6537-6575.
doi: 10.1016/j.jde.2017.07.024. |
[35] |
N. Shigesada, K. Kawasaki and E. Teramoto,
Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[36] |
Y. Su, J. J. Wei and J. P. Shi,
Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differential Equations, 247 (2009), 1156-1184.
doi: 10.1016/j.jde.2009.04.017. |
[37] |
Y. Su, J. J. Wei and J. P. Shi,
Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.
doi: 10.1007/s10884-012-9268-z. |
[38] |
O. Vasilyeva and F. Lutscher,
Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Q., 18 (2010), 439-469.
|
[39] |
J. H. Wu, Theory and Applications of Partial Functional-Differential Equations, volume 119 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[40] |
X. P. Yan and W. T. Li,
Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model, Nonlinearity, 23 (2010), 1413-1431.
doi: 10.1088/0951-7715/23/6/008. |
[41] |
K. Yoshida,
The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12 (1982), 321-348.
|
[42] |
B. Zhang, X. Liu, D. L. DeAngelis, W. M. Ni and G. G. Wang,
Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.
doi: 10.1016/j.mbs.2015.03.005. |






[1] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[2] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[3] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[4] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[5] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[6] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[7] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[8] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283 |
[9] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[10] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[11] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[12] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[13] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[14] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[15] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[16] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[17] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[18] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[19] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[20] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]