Discrete-time finite-state dynamical systems on networks are often conceived as tractable approximations to more detailed ODE-based models of natural systems. Here we review research on a class of such discrete models $N$ that approximate certain ODE models $M$ of mathematical neuroscience. In particular, we outline several open problems on the dynamics of the models $N$ themselves, as well as on structural features of ODE models $M$ that allow for the construction of discrete approximations $N$ whose predictions will be consistent with those of $M$.
Citation: |
[1] |
E. Ackermann, T. P. Peixoto and B. Drossel, Reliable dynamics in Boolean and continuous networks,
New Journal of Physics, 14 (2012), 123029, 17pp.
doi: 10.1088/1367-2630/14/12/123029.![]() ![]() ![]() |
[2] |
E. Ackermann, E. M. Weiel and T. Pfaff, Boolean versus continuous dynamics in modules with two feedback loops,
European Physical Journal E, 35 (2012), p107.
doi: 10.1140/epje/i2012-12107-9.![]() ![]() |
[3] |
S. Ahn,
Transient and Attractor Dynamics in Models for Odor Discrimination, Ph. D. Thesis, The Ohio State University, 2010. Available from: https://etd.ohiolink.edu/rws_etd/document/get/osu1280342970/inline.
![]() ![]() |
[4] |
S. Ahn and W. Just, Digraphs vs. dynamics in discrete models of neuronal networks, Disc. Contin. Dyn. Syst. Ser. B, 17 (2012), 1365-1381.
doi: 10.3934/dcdsb.2012.17.1365.![]() ![]() ![]() |
[5] |
S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics, Physica D, 239 (2010), 515-528.
doi: 10.1016/j.physd.2009.12.011.![]() ![]() ![]() |
[6] |
M. Aldana, S. Coppersmith and L. P. Kadanoff, Boolean dynamics with random couplings,
in: Perspectives and Problems in Nonlinear Science (eds. E. Kaplan, J. E. Marsden and K.
R. Sreenivasan), Springer, (2003), 23–89.
![]() ![]() |
[7] |
A. D. Barbour, L. Holst and S. Janson,
Poisson Approximation, Clarendon Press, Oxford, UK, 1992.
![]() ![]() |
[8] |
J. M. Bower and H. Bolouri (eds.),
Computational Modeling of Genetic and Biochemical networks, MIT Press, Cambridge, MA, 2001.
![]() |
[9] |
S. Braunewell and S. Bornholdt, Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity, J. Theor. Biol., 245 (2007), 638-643.
doi: 10.1016/j.jtbi.2006.11.012.![]() ![]() ![]() |
[10] |
B. Drossel, Random boolean networks, in: Reviews of Nonlinear Dynamics and Complexity,
Volume 1 (ed. H. G. Schuster), Wiley, (2008), 69–110.
![]() |
[11] |
R. Edwards, Analysis of continuous-time switching networks, Physica D, 146 (2000), 165-199.
doi: 10.1016/S0167-2789(00)00130-5.![]() ![]() ![]() |
[12] |
J. Epperlein and S. Siegmund, Phase-locked trajectories for dynamical systems on graphs, Disc. Contin. Dyn. Syst. Ser. B, 18 (2013), 1827-1844.
doi: 10.3934/dcdsb.2013.18.1827.![]() ![]() ![]() |
[13] |
M. Franceschetti and R. Meester, Critical node lifetimes in random networks via the Chen-Stein method, IEEE Trans. Inf. Theory, 52 (2006), 2831-2837.
doi: 10.1109/TIT.2006.874545.![]() ![]() ![]() |
[14] |
N. Friedman, S. Ito, B. A. Brinkman, M. Shimono, R. E. DeVille, K. A. Dahmen, J. M. Beggs and T. C. Butler, Universal critical dynamics in high resolution neuronal avalanche data,
Phys. Rev. Lett. , 108 (2012), 208102.
doi: 10.1103/PhysRevLett.108.208102.![]() ![]() |
[15] |
E. Gehrmann and B. Drossel, Boolean versus continuous dynamics on simple two-gene modules,
Phys. Rev. E, 82 (2010), 046120, 9pp.
doi: 10.1103/PhysRevE.82.046120.![]() ![]() ![]() |
[16] |
W. Just and S. Ahn, Lengths of attractors and transients in neuronal networks with random connectivities preprint, (2014) arXiv: 1404.5536.
doi: 10.1137/140996045.![]() ![]() ![]() |
[17] |
W. Just and S. Ahn, Lengths of attractors and transients in neuronal networks with random connectivities, SIAM J. Disc. Math., 30 (2016), 912-933.
doi: 10.1137/140996045.![]() ![]() ![]() |
[18] |
W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks, Physica D, 237 (2008), 3186-3196.
doi: 10.1016/j.physd.2008.08.011.![]() ![]() ![]() |
[19] |
W. Just, S. Ahn and D. Terman, Neuronal networks: A discrete model, in Mathematical
Concepts and Methods in Modern Biology: Using Modern Discrete Models (eds. R. Robeva
and T. Hodge), Academic Press, (2013), 179–211.
![]() |
[20] |
W. Just, M. Korb, B. Elbert and T. R. Young, Two classes of ODE models with switch-like behavior, Physica D, 264 (2013), 35-48.
doi: 10.1016/j.physd.2013.08.008.![]() ![]() |
[21] |
R. K. C.,
Random Connectivities in Neuronal and Other Biologically Relevant Networks, Ph. D. Dissertation Proposal, Ohio University, May 2016.
![]() |
[22] |
S. A. Kauffman,
Origins of Order: Self-Organization and Selection in Evolution, Oxford U Press, Oxford, UK, 1993.
![]() |
[23] |
G. Laurent, Olfactory network dynamics and the coding of multidimensional signals, Nat. Rev. Neurosci., 3 (2002), 884-895.
doi: 10.1038/nrn964.![]() ![]() |
[24] |
F. Li, T. Long, Y. Lu, Q. Ouyang and Ch. Tang, The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 4781-4786.
doi: 10.1073/pnas.0305937101.![]() ![]() |
[25] |
A. Polynikis, S. J. Hogan and M. di Bernardo, Comparing different ODE modelling approaches for gene regulatory networks, J. Theoret. Biol., 261 (2009), 511-530.
doi: 10.1016/j.jtbi.2009.07.040.![]() ![]() ![]() |
[26] |
J. Rinzel, D. Terman, X.-J. Wang and B. Ermentrout, Propagating activity patterns in large-scale inhibitory neuronal networks, Science, 279 (1998), 1351-1355.
doi: 10.1126/science.279.5355.1351.![]() ![]() |
[27] |
A. Saadatpour and R. Albert, A comparative study of qualitative and quantitative dynamic models of biological regulatory networks,
EPJ Nonlinear Biomedical Physics, 4 (2016), 5pp.
![]() |
[28] |
S. Scarpetta and A. de Candia, Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns,
PLoS One, 8 (2013), e64162.
doi: 10.1371/journal.pone.0064162.![]() ![]() |
[29] |
T. U. Singh, K. Manchanda, R. Ramaswamy and A. Bose, Excitable nodes on random graphs: Relating dynamics to network structure, SIAM J. Appl. Dyn. Syst., 10 (2011), 987-1012.
doi: 10.1137/100802864.![]() ![]() ![]() |
[30] |
D. Terman, S. Ahn, X. Wang and W. Just, Reducing neuronal networks to discrete dynamics, Physica D, 237 (2008), 324-338.
doi: 10.1016/j.physd.2007.09.011.![]() ![]() ![]() |
[31] |
D. Terman, A. Bose and N. Kopell, Functional reorganization in thalamocortical networks: Transition between spindling and delta sleep rhythms, Proc. Natl. Acad. Sci. U.S.A., 93 (1996), 15417-15422.
doi: 10.1073/pnas.93.26.15417.![]() ![]() |
[32] |
D. M. Wittmann, J. Krumsiek, J. Saez-Rodriguez, D. A. Lauffenburger, S. Klamt and F. J. Theis, Transforming Boolean models to continuous models: Methodology and application to T -cell receptor signaling,
BMC Syst. Biol., 3 (2009), p98.
doi: 10.1186/1752-0509-3-98.![]() ![]() |