February  2019, 24(2): 587-613. doi: 10.3934/dcdsb.2018198

Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation

1. 

College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China

2. 

School of mathematics and information technology, Jiangsu Second Normal University, Nanjing 210013, China

3. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

4. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

* Corresponding author: Liangjian Hu

Received  May 2017 Revised  January 2018 Published  June 2018

Fund Project: The author Wei Mao is supported by the National Natural Science Foundation of China (11401261) and "333 High-level Personnel Training Project" of Jiangsu Province. The author Liangjian Hu is supported by the National Natural Science Foundation of China (11471071). The author Xuerong Mao is supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1).

In this paper, we are concerned with the asymptotic properties and numerical analysis of the solution to hybrid stochastic differential equations with jumps. Applying the theory of M-matrices, we will study the $ p $th moment asymptotic boundedness and stability of the solution. Under the non-linear growth condition, we also show the convergence in probability of the Euler-Maruyama approximate solution to the true solution. Finally, some examples are provided to illustrate our new results.

Citation: Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198
References:
[1]

S. AlbeverioZ. Brzezniak and J. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, J. Math. Anal. Appl., 371 (2010), 309-322.  doi: 10.1016/j.jmaa.2010.05.039.  Google Scholar

[2]

W. J. Anderson, Continuous-Time Markov Chains, Springer, Berlin, 1991. doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[3]

D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323.  Google Scholar

[4]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Levy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[5]

J. BaoB. BottcherX. Mao and C. Yuan, Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math., 236 (2011), 119-131.  doi: 10.1016/j.cam.2011.05.043.  Google Scholar

[6]

M. Baran, Approximations for solutions of Levy-Type Stochastic Differential Equations, Stochastic Analysis and Applications., 27 (2009), 924-961.  doi: 10.1080/07362990903136447.  Google Scholar

[7]

N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 205 (2007), 982-1001.  doi: 10.1016/j.cam.2006.03.040.  Google Scholar

[8]

A. Gardon, The order of approximations for solutions of Ito-type stochastic differential equations with jumps, Stoch. Anal. Appl., 22 (2004), 679-699.  doi: 10.1081/SAP-120030451.  Google Scholar

[9]

D. J. Higham and P. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 101 (2005), 101-119.  doi: 10.1007/s00211-005-0611-8.  Google Scholar

[10]

L. HuX. Mao and Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control. Lett., 62 (2013), 178-187.  doi: 10.1016/j.sysconle.2012.11.009.  Google Scholar

[11]

L. HuX. Mao and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013), 2319-2332.  doi: 10.1109/TAC.2013.2256014.  Google Scholar

[12]

J. Jakubowski and M. Nieweglowski, Jump-diffusion processes in random environments, J. Differential Equations., 257 (2014), 2671-2703.  doi: 10.1016/j.jde.2014.05.052.  Google Scholar

[13]

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Stijhoff and Noordhoff, Alphen, 1980.  Google Scholar

[14]

H. Kunita, Stochastic diffrential equations based on Lévy processes and stochastic flows of diffomorphisms in Real and Stochastic Analysis, New Perspectives, Berlin, (2004), 305-373.   Google Scholar

[15]

X. LiX. Mao and Y. Shen, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Difference Equ. Appl., 16 (2010), 195-207.  doi: 10.1080/10236190802695456.  Google Scholar

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and pth moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automa. Control., 56 (2011), 1985-1990.  doi: 10.1109/TAC.2011.2146970.  Google Scholar

[17]

J. Luo and K. Liu, Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl., 118 (2008), 864-895.  doi: 10.1016/j.spa.2007.06.009.  Google Scholar

[18]

X. Mao, LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 236 (1999), 350-369.  doi: 10.1006/jmaa.1999.6435.  Google Scholar

[19]

X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 268 (2002), 125-142.  doi: 10.1006/jmaa.2001.7803.  Google Scholar

[20]

X. Mao and M. Rassias, Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005), 1045-1069.  doi: 10.1080/07362990500118637.  Google Scholar

[21]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London, 2006. doi: 10.1142/p473.  Google Scholar

[22]

X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.  Google Scholar

[23]

X. Mao, Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions, Appl. Math. Comput., 217 (2011), 5512-5524.  doi: 10.1016/j.amc.2010.12.023.  Google Scholar

[24]

G. MarionX. Mao and E. Renshaw, Convergence of the Euler shceme for a class of stochastic Differential Equations, International Mathematical Journal., 1 (2002), 9-22.   Google Scholar

[25]

M. Milosevic, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014), 672-685.  doi: 10.1016/j.amc.2014.03.132.  Google Scholar

[26]

E. MordeckiA. Szepessy and R. Tempone, Adaptive weak approximation of diffusions with jumps, SIAM Journal on Numerical Analysis., 46 (2008), 1732-1768.  doi: 10.1137/060669632.  Google Scholar

[27]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer, Berlin, 2005.  Google Scholar

[28]

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. doi: 10.1007/978-3-642-13694-8.  Google Scholar

[29]

V. Popov, Hyperstability of control system, Springer, Berlin, 1973.  Google Scholar

[30]

S. T. Rong, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, Berlin, 2005.  Google Scholar

[31]

M. SongL. Hu and X. Mao, Khasminskii-Type theorems for stochastic functional differential equations, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 1697-1714.  doi: 10.3934/dcdsb.2013.18.1697.  Google Scholar

[32]

I. S. Wee, Stability for multidimensional jump-diffusion processes, Stochastic Process. Appl., 80 (1999), 193-209.  doi: 10.1016/S0304-4149(98)00078-7.  Google Scholar

[33]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control., 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[34]

F. Wu and S. Hu, Stochastic suppression and stabilization of delay differential systems, International Journal of Robust and Nonlinear Control., 21 (2011), 488-500.  doi: 10.1002/rnc.1606.  Google Scholar

[35]

F. Wu and S. Hu, The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, 32 (2012), 1065-1094.   Google Scholar

[36]

F. Xi, On the stability of a jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600.  doi: 10.1016/j.jmaa.2007.10.018.  Google Scholar

[37]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Process. Appl., 119 (2009), 2198-2221.  doi: 10.1016/j.spa.2008.11.001.  Google Scholar

[38]

F. Xi and G. Yin, Almost sure stability and instability for switching-jump-diffusion systems with state-dependent switching, J. Math. Anal. Appl., 400 (2013), 460-474.  doi: 10.1016/j.jmaa.2012.10.062.  Google Scholar

[39]

Z. Yang and G. Yin, Stability of nonlinear regime-switching jump diffusion, Nonlinear Anal., 75 (2012), 3854-3873.  doi: 10.1016/j.na.2012.02.007.  Google Scholar

[40]

G. Yin and C. Zhu, Hybrid Switching Diffusion: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.  Google Scholar

[41]

G. Yin and F. Xi, Stablity of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549.  doi: 10.1137/080738301.  Google Scholar

[42]

S. YouW. MaoX. Mao and L. Hu, Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015), 73-83.  doi: 10.1016/j.amc.2015.04.022.  Google Scholar

[43]

C. Yuan and W. Glover, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Comput. Appl. Math., 194 (2006), 207-226.  doi: 10.1016/j.cam.2005.07.004.  Google Scholar

[44]

C. Yuan and J. Bao, On the exponential stability of switching-diffusion processes with jumps, Quart. Appl. Math., 71 (2013), 311-329.  doi: 10.1090/S0033-569X-2012-01292-8.  Google Scholar

[45]

S. ZhouM. Xue and F. Wu, Robustness of hybrid neutral differential systems perturbed by noise, Journal of Systems Science and Complexity, 27 (2014), 1138-1157.  doi: 10.1007/s11424-014-2037-9.  Google Scholar

[46]

Q. Zhu, Asymptotic stability in the pth moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

show all references

References:
[1]

S. AlbeverioZ. Brzezniak and J. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, J. Math. Anal. Appl., 371 (2010), 309-322.  doi: 10.1016/j.jmaa.2010.05.039.  Google Scholar

[2]

W. J. Anderson, Continuous-Time Markov Chains, Springer, Berlin, 1991. doi: 10.1007/978-1-4612-3038-0.  Google Scholar

[3]

D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323.  Google Scholar

[4]

D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential equations driven by Levy noise, J. Appl. Probab., 46 (2009), 1116-1129.  doi: 10.1239/jap/1261670692.  Google Scholar

[5]

J. BaoB. BottcherX. Mao and C. Yuan, Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math., 236 (2011), 119-131.  doi: 10.1016/j.cam.2011.05.043.  Google Scholar

[6]

M. Baran, Approximations for solutions of Levy-Type Stochastic Differential Equations, Stochastic Analysis and Applications., 27 (2009), 924-961.  doi: 10.1080/07362990903136447.  Google Scholar

[7]

N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 205 (2007), 982-1001.  doi: 10.1016/j.cam.2006.03.040.  Google Scholar

[8]

A. Gardon, The order of approximations for solutions of Ito-type stochastic differential equations with jumps, Stoch. Anal. Appl., 22 (2004), 679-699.  doi: 10.1081/SAP-120030451.  Google Scholar

[9]

D. J. Higham and P. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 101 (2005), 101-119.  doi: 10.1007/s00211-005-0611-8.  Google Scholar

[10]

L. HuX. Mao and Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control. Lett., 62 (2013), 178-187.  doi: 10.1016/j.sysconle.2012.11.009.  Google Scholar

[11]

L. HuX. Mao and L. Zhang, Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013), 2319-2332.  doi: 10.1109/TAC.2013.2256014.  Google Scholar

[12]

J. Jakubowski and M. Nieweglowski, Jump-diffusion processes in random environments, J. Differential Equations., 257 (2014), 2671-2703.  doi: 10.1016/j.jde.2014.05.052.  Google Scholar

[13]

R. Z. Khasminskii, Stochastic Stability of Differential Equations, Stijhoff and Noordhoff, Alphen, 1980.  Google Scholar

[14]

H. Kunita, Stochastic diffrential equations based on Lévy processes and stochastic flows of diffomorphisms in Real and Stochastic Analysis, New Perspectives, Berlin, (2004), 305-373.   Google Scholar

[15]

X. LiX. Mao and Y. Shen, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Difference Equ. Appl., 16 (2010), 195-207.  doi: 10.1080/10236190802695456.  Google Scholar

[16]

L. LiuY. Shen and F. Jiang, The almost sure asymptotic stability and pth moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automa. Control., 56 (2011), 1985-1990.  doi: 10.1109/TAC.2011.2146970.  Google Scholar

[17]

J. Luo and K. Liu, Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl., 118 (2008), 864-895.  doi: 10.1016/j.spa.2007.06.009.  Google Scholar

[18]

X. Mao, LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 236 (1999), 350-369.  doi: 10.1006/jmaa.1999.6435.  Google Scholar

[19]

X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 268 (2002), 125-142.  doi: 10.1006/jmaa.2001.7803.  Google Scholar

[20]

X. Mao and M. Rassias, Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005), 1045-1069.  doi: 10.1080/07362990500118637.  Google Scholar

[21]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London, 2006. doi: 10.1142/p473.  Google Scholar

[22]

X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.  Google Scholar

[23]

X. Mao, Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions, Appl. Math. Comput., 217 (2011), 5512-5524.  doi: 10.1016/j.amc.2010.12.023.  Google Scholar

[24]

G. MarionX. Mao and E. Renshaw, Convergence of the Euler shceme for a class of stochastic Differential Equations, International Mathematical Journal., 1 (2002), 9-22.   Google Scholar

[25]

M. Milosevic, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014), 672-685.  doi: 10.1016/j.amc.2014.03.132.  Google Scholar

[26]

E. MordeckiA. Szepessy and R. Tempone, Adaptive weak approximation of diffusions with jumps, SIAM Journal on Numerical Analysis., 46 (2008), 1732-1768.  doi: 10.1137/060669632.  Google Scholar

[27]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer, Berlin, 2005.  Google Scholar

[28]

E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. doi: 10.1007/978-3-642-13694-8.  Google Scholar

[29]

V. Popov, Hyperstability of control system, Springer, Berlin, 1973.  Google Scholar

[30]

S. T. Rong, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, Berlin, 2005.  Google Scholar

[31]

M. SongL. Hu and X. Mao, Khasminskii-Type theorems for stochastic functional differential equations, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 1697-1714.  doi: 10.3934/dcdsb.2013.18.1697.  Google Scholar

[32]

I. S. Wee, Stability for multidimensional jump-diffusion processes, Stochastic Process. Appl., 80 (1999), 193-209.  doi: 10.1016/S0304-4149(98)00078-7.  Google Scholar

[33]

F. Wu and S. Hu, Suppression and stabilisation of noise, Internat. J. Control., 82 (2009), 2150-2157.  doi: 10.1080/00207170902968108.  Google Scholar

[34]

F. Wu and S. Hu, Stochastic suppression and stabilization of delay differential systems, International Journal of Robust and Nonlinear Control., 21 (2011), 488-500.  doi: 10.1002/rnc.1606.  Google Scholar

[35]

F. Wu and S. Hu, The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, 32 (2012), 1065-1094.   Google Scholar

[36]

F. Xi, On the stability of a jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008), 588-600.  doi: 10.1016/j.jmaa.2007.10.018.  Google Scholar

[37]

F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Process. Appl., 119 (2009), 2198-2221.  doi: 10.1016/j.spa.2008.11.001.  Google Scholar

[38]

F. Xi and G. Yin, Almost sure stability and instability for switching-jump-diffusion systems with state-dependent switching, J. Math. Anal. Appl., 400 (2013), 460-474.  doi: 10.1016/j.jmaa.2012.10.062.  Google Scholar

[39]

Z. Yang and G. Yin, Stability of nonlinear regime-switching jump diffusion, Nonlinear Anal., 75 (2012), 3854-3873.  doi: 10.1016/j.na.2012.02.007.  Google Scholar

[40]

G. Yin and C. Zhu, Hybrid Switching Diffusion: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.  Google Scholar

[41]

G. Yin and F. Xi, Stablity of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010), 4525-4549.  doi: 10.1137/080738301.  Google Scholar

[42]

S. YouW. MaoX. Mao and L. Hu, Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015), 73-83.  doi: 10.1016/j.amc.2015.04.022.  Google Scholar

[43]

C. Yuan and W. Glover, Approximate solutions of stochastic differential delay equations with Markovian switching, J. Comput. Appl. Math., 194 (2006), 207-226.  doi: 10.1016/j.cam.2005.07.004.  Google Scholar

[44]

C. Yuan and J. Bao, On the exponential stability of switching-diffusion processes with jumps, Quart. Appl. Math., 71 (2013), 311-329.  doi: 10.1090/S0033-569X-2012-01292-8.  Google Scholar

[45]

S. ZhouM. Xue and F. Wu, Robustness of hybrid neutral differential systems perturbed by noise, Journal of Systems Science and Complexity, 27 (2014), 1138-1157.  doi: 10.1007/s11424-014-2037-9.  Google Scholar

[46]

Q. Zhu, Asymptotic stability in the pth moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (235)
  • HTML views (388)
  • Cited by (1)

Other articles
by authors

[Back to Top]