In this paper, we consider the numerical approximation for a class of fractional stochastic partial differential equations driven by infinite dimensional fractional Brownian motion with hurst index $ H∈ (\frac{1}{2}, 1) $. By using spectral Galerkin method, we analyze the spatial discretization, and we give the temporal discretization by using the piecewise constant, discontinuous Galerkin method and a Laplace transform convolution quadrature. Under some suitable assumptions, we prove the sharp regularity properties and the optimal strong convergence error estimates for both semi-discrete and fully discrete schemes.
Citation: |
F. Biagini, Y. Hu, B. Øksendal and T. Zhang,
Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2008.
doi: 10.1007/978-1-84628-797-8.![]() ![]() ![]() |
|
M. Caputo
, Linear models of dissipation whose $ Q $ is almost frequency independent, Part Ⅲ, Geophys, J. R. Astron. Soc., 13 (1967)
, 529-539.
![]() |
|
L. Chen
, Nonlinear stochastic time-fractional diffusion equations on $ \mathbb{R} $: Moments, Hölder regularity and intermittency, Trans. Amer. Math. Soc., 369 (2017)
, 8497-8535.
doi: 10.1090/tran/6951.![]() ![]() ![]() |
|
J. Cui
and L. Yan
, Controllability of neutral stochastic evolution equation driving by fractional Brownian motion, Acta. Math. Sci., 37 (2017)
, 108-118.
doi: 10.1016/S0252-9602(16)30119-9.![]() ![]() ![]() |
|
M. Cui
, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009)
, 7792-7804.
doi: 10.1016/j.jcp.2009.07.021.![]() ![]() ![]() |
|
G. DaPrato and J. Zabczyk,
Stochastic Equations in Infinite Dimensions, Cambridge university press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
|
T. E. Duncan
, B. Pasik-Duncan
and B. Maslowski
, Semilinear stochastic equations in a Hilbert space with a fractional brownian motion, SIAM J. Math. Anal., 40 (2009)
, 2286-2315.
doi: 10.1137/08071764X.![]() ![]() ![]() |
|
T. E. Duncan
, B. Pasik-Duncan
and B. Maslowski
, Fractional Brownian motion and stochastic equations in Hilbert spaces, Stoch. Dyn., 2 (2002)
, 225-250.
doi: 10.1142/S0219493702000340.![]() ![]() ![]() |
|
Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc., 175 (2005), ⅷ+127 pp.
doi: 10.1090/memo/0825.![]() ![]() ![]() |
|
A. Jentzen
and P. E. Kloeden
, The numerical approximation of stochastic partial differential equations, Milan J. Math., 77 (2009)
, 205-244.
doi: 10.1007/s00032-009-0100-0.![]() ![]() ![]() |
|
A. Jentzen and P. E. Kloeden,
Taylor Approximations for Stochastic Partial Differential Equations, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611972016.![]() ![]() ![]() |
|
B. Jin
, R. Lazarov
and Z. Zhou
, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51 (2013)
, 445-466.
doi: 10.1137/120873984.![]() ![]() ![]() |
|
M. Kamrani
and N. Jamshidi
, Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer., 44 (2017)
, 1-10.
doi: 10.1016/j.cnsns.2016.07.023.![]() ![]() ![]() |
|
M. Kovács
and J. Printems
, Strong order of convergence of a fully discrete approximation of a linear stochastic Volterra type evolution equation, Math. Comp., 83 (2014)
, 2325-2346.
doi: 10.1090/S0025-5718-2014-02803-2.![]() ![]() ![]() |
|
R. Kruse
, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34 (2014)
, 217-251.
doi: 10.1093/imanum/drs055.![]() ![]() ![]() |
|
R. Kruse,
Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014.
doi: 10.1007/978-3-319-02231-4.![]() ![]() ![]() |
|
X. Li
and X. Yang
, Error estimates of finite element methods for stochastic fractional differential equations, J. Comput. Math., 35 (2017)
, 346-362.
doi: 10.4208/jcm.1607-m2015-0329.![]() ![]() ![]() |
|
B. Maslowski
and D. Nualart
, Evolution equations driven by a fractional brownian motion, J. Funct. Anal., 202 (2003)
, 277-305.
doi: 10.1016/S0022-1236(02)00065-4.![]() ![]() ![]() |
|
W. McLean
and K. Mustapha
, Convergence analysis of a discontinuous Galerkin method for a fractional diffusion equation, Numer. Algor., 52 (2009)
, 69-88.
doi: 10.1007/s11075-008-9258-8.![]() ![]() ![]() |
|
W. McLean
and K. Mustapha
, Time-stepping error bounds for fractional diffusion problems with nonsmooth initial data, J. Comput. Phys., 293 (2015)
, 201-217.
doi: 10.1016/j.jcp.2014.08.050.![]() ![]() ![]() |
|
A. L. Mehaute, T. Machado, J. C. Trigeassou and J. Sabatier, Fractional differential and its applications, FDA'04, Proceedings of the first IFAC workshop, vol. 2004-1, International Federation of Autromatic Control, ENSEIRB, Bordeaux, France, July 19-21, 2004.
![]() |
|
Y. S. Mishura,
Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, 2008.
doi: 10.1007/978-3-540-75873-0.![]() ![]() ![]() |
|
I. Nourdin,
Selected Aspects of Fractional Brownian Motion, Springer, 2012.
doi: 10.1007/978-88-470-2823-4.![]() ![]() ![]() |
|
D. Nualart,
Malliavin Calculus and Related Topics, Springer, 2006.
![]() ![]() |
|
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
|
J. Quintana-Murillo
and S. B. Yuste
, A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations, Eur. Phys. J. Spec. Top., 222 (2013)
, 1987-1998.
![]() |
|
K. Sakamoto
and M. Yamamoto
, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011)
, 426-447.
doi: 10.1016/j.jmaa.2011.04.058.![]() ![]() ![]() |
|
T. Simon
, Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014)
, 1-25.
doi: 10.1214/EJP.v19-3058.![]() ![]() ![]() |
|
V. Thomée,
Galerkin Finite Element Methods for Parabolic Problems, Springer, 2006.
![]() ![]() |
|
S. Tindel
, C. Tudor
and F. Viens
, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Relat. Field., 127 (2003)
, 186-204.
doi: 10.1007/s00440-003-0282-2.![]() ![]() ![]() |
|
C. A. Tudor,
Analysis of Variations for Self-similar Processes, Springer, 2013.
doi: 10.1007/978-3-319-00936-0.![]() ![]() ![]() |
|
S. Umarov
, On fractional Duhamels principle and its applications, J. Diff. Equa., 252 (2012)
, 5217-5234.
doi: 10.1016/j.jde.2012.01.029.![]() ![]() ![]() |
|
F. Wang,
Harnack Inequalities for Stochastic Partial Differential Equations, Springer, New York, 2013.
doi: 10.1007/978-1-4614-7934-5.![]() ![]() ![]() |
|
X. Wang
, R. Qi
and F. Jiang
, Sharp mean-square regularity results for SPDEs with fractional noise and optimal convergence rates for the numerical approximations, BIT Numer. Math., 57 (2017)
, 557-585.
doi: 10.1007/s10543-016-0639-4.![]() ![]() ![]() |
|
Y. Yan
, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005)
, 1363-1384.
doi: 10.1137/040605278.![]() ![]() ![]() |
|
Y. Zhang
, Z. Sun
and H. Liao
, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265 (2014)
, 195-210.
doi: 10.1016/j.jcp.2014.02.008.![]() ![]() ![]() |
|
T. Zhang
, Lattice approximations of reflected stochastic partial differential equations driven by space-time white noise, Ann. Appl. Probab., 26 (2016)
, 3602-3629.
doi: 10.1214/16-AAP1186.![]() ![]() ![]() |
Convergence rates for the spatial discretization
Convergence rates for the differential