• Previous Article
    Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps
  • DCDS-B Home
  • This Issue
  • Next Article
    Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion
February  2019, 24(2): 637-655. doi: 10.3934/dcdsb.2018200

Advection-diffusion equation on a half-line with boundary Lévy noise

Friedrich Schiller University Jena, School of Mathematics and Computer Science, Institute for Mathematics, Ernst-Abbe-Platz 2, 07743 Jena, Germany

Received  May 2017 Revised  February 2018 Published  June 2018

In this paper we study a one-dimensional linear advection-diffusion equation on a half-line driven by a Lévy boundary noise. The problem is motivated by the study of contaminant transport models under random sources (P. P. Wang and C. Zheng, Ground water, 43 (2005), [34]). We determine the closed form formulae for mild solutions of this equation with Dirichlet and Neumann noise and study approximations of these solutions by classical solutions obtained with the help of Wong-Zakai approximations of the driving Lévy process.

Citation: Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200
References:
[1]

E. Alòs and S. Bonaccorsi, Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 5 (2002), 465-481.  doi: 10.1142/S0219025702000948.  Google Scholar

[2]

E. Alòs and S. Bonaccorsi, Stochastic partial differential equations with Dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist, 38 (2002), 125-154.  doi: 10.1016/S0246-0203(01)01097-4.  Google Scholar

[3]

A. V. Balakrishnan, Applied Functional Analysis, vol. 3 of Applications of Mathematics, 2nd edition, Springer, New York, 1981.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[5]

P. BruneJ. Duan and B. Schmalfuss, Random dynamics of the Boussinesq system with dynamical boundary conditions, Stochastic Analysis and Applications, 27 (2009), 1096-1116.  doi: 10.1080/07362990902976546.  Google Scholar

[6]

Z. Brzeźniak and F. Flandoli, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stochastic Processes and Their Applications, 55 (1995), 329-358.  doi: 10.1016/0304-4149(94)00037-T.  Google Scholar

[7]

Z. BrzeźniakB. GoldysS. Peszat and F. Russo, Second order PDEs with Dirichlet white noise boundary conditions, Journal of Evolution Equations, 15 (2015), 1-26.  doi: 10.1007/s00028-014-0246-2.  Google Scholar

[8]

Z. Brzeźniak and S. Peszat, Hyperbolic equations with random boundary conditions, in Recent Development in Stochastic Dynamics and Stochastic Analysis (eds. J. Duan, S. Luo and C. Wang), vol. 8 of Interdisciplinary Mathematical Sciences, World Scientific, Singapore, 2010, 1-21. doi: 10.1142/9789814277266_0001.  Google Scholar

[9]

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solid, The Clarendon Press, Oxford University Press, New York, 1988.  Google Scholar

[10]

A. Chaudhuri and M. Sekhar, Stochastic modeling of solute transport in 3-D heterogeneous porous media with random source condition, Stochastic Environmental Research and Risk Assessment, 21 (2006), 159-173.  doi: 10.1007/s00477-006-0053-6.  Google Scholar

[11]

A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics, 21 (1987), 251-286.  doi: 10.1080/17442508708833459.  Google Scholar

[12]

I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential and Integral Equations, 17 (2004), 751-780.   Google Scholar

[13]

G. Da Prato and J. Zabczyk, Evolution equations with white-noise boundary conditions, Stochastics and Stochastics Reports, 42 (1993), 167-182.  doi: 10.1080/17442509308833817.  Google Scholar

[14]

G. Fabbri and B. Goldys, An LQ problem for the heat equation on the halfline with Dirichlet boundary control and noise, SIAM Journal on Control and Optimization, 48 (2009), 1473-1488.  doi: 10.1137/070711529.  Google Scholar

[15]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics, European Mathematical Society, Zürich, 2008.  Google Scholar

[16]

E. Hausenblas and P. A. Razafimandimby, Controllability and qualitative properties of the solutions to SPDEs driven by boundary Lévy noise, Stochastic Partial Differential Equations: Analysis and Computations, 3 (2015), 221-271.  doi: 10.1007/s40072-015-0047-9.  Google Scholar

[17]

W. A. Jury and H. Flühler, Transport of chemicals through soil: Mechanisms, models, and field applications, Advances in agronomy, 47 (1992), 141-201.  doi: 10.1016/S0065-2113(08)60490-3.  Google Scholar

[18]

A. Kreft and A. Zuber, On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions, Chemical Engineering Science, 33 (1978), 1471-1480.  doi: 10.1016/0009-2509(78)85196-3.  Google Scholar

[19]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, vol. 181 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1972.  Google Scholar

[20]

C. Man and C. W. Tsai, Stochastic partial differential equation-based model for suspended sediment transport in surface water flows, Journal of Engineering Mechanics, 133 (2007), 422-430.  doi: 10.1061/(ASCE)0733-9399(2007)133:4(422).  Google Scholar

[21]

F. Masiero, A stochastic optimal control problem for the heat equation on the halfline with Dirichlet boundary-noise and boundary-control, Applied Mathematics & Optimization, 62 (2010), 253-294.  doi: 10.1007/s00245-010-9103-z.  Google Scholar

[22]

S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the haf-line, Transactions of the American Mathematical Society, 353 (2000), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.  Google Scholar

[23]

J. C. Parker and M. T. van Genuchten, Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport, Water Resources Research, 20 (1984), 866-872.  doi: 10.1029/WR020i007p00866.  Google Scholar

[24]

I. Pavlyukevich and M. Riedle, Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces, Stochastic Analysis and Applications, 33 (2015), 271-305.  doi: 10.1080/07362994.2014.988358.  Google Scholar

[25]

I. Pavlyukevich and I. M. Sokolov, One-dimensional space-discrete transport subject to Lévy perturbations, The Journal of Statistical Physics, 133 (2008), 205-215.  doi: 10.1007/s10955-008-9607-y.  Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications toPartial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, vol. 113 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373.  Google Scholar

[28]

A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[29]

M. Riedle, Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Analysis, 42 (2015), 809-838.  doi: 10.1007/s11118-014-9458-x.  Google Scholar

[30]

A. V. Skorokhod, Limit theorems for stochastic processes, Theory of Probability and its Applications, 1 (1956), 289-319.   Google Scholar

[31]

G. Tessitore and J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, Journal of Evolution Equations, 6 (2006), 621-655.  doi: 10.1007/s00028-006-0280-9.  Google Scholar

[32]

H. Triebel, Theory of Function Spaces II, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[33]

K. Twardowska, On the approximation theorem of the Wong-Zakai type for the functional stochastic differential equations, Probability and Mathematical Statistics, 12 (1991), 319-334.   Google Scholar

[34]

P. P. Wang and C. Zheng, Contaminant transport models under random sources, Ground Water, 43 (2005), 423-433.   Google Scholar

[35]

W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, 2002.  Google Scholar

[36]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, The Annals of Mathematical Statistics, 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[37]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, International Journal of Engineering Science, 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

show all references

References:
[1]

E. Alòs and S. Bonaccorsi, Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 5 (2002), 465-481.  doi: 10.1142/S0219025702000948.  Google Scholar

[2]

E. Alòs and S. Bonaccorsi, Stochastic partial differential equations with Dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist, 38 (2002), 125-154.  doi: 10.1016/S0246-0203(01)01097-4.  Google Scholar

[3]

A. V. Balakrishnan, Applied Functional Analysis, vol. 3 of Applications of Mathematics, 2nd edition, Springer, New York, 1981.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[5]

P. BruneJ. Duan and B. Schmalfuss, Random dynamics of the Boussinesq system with dynamical boundary conditions, Stochastic Analysis and Applications, 27 (2009), 1096-1116.  doi: 10.1080/07362990902976546.  Google Scholar

[6]

Z. Brzeźniak and F. Flandoli, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stochastic Processes and Their Applications, 55 (1995), 329-358.  doi: 10.1016/0304-4149(94)00037-T.  Google Scholar

[7]

Z. BrzeźniakB. GoldysS. Peszat and F. Russo, Second order PDEs with Dirichlet white noise boundary conditions, Journal of Evolution Equations, 15 (2015), 1-26.  doi: 10.1007/s00028-014-0246-2.  Google Scholar

[8]

Z. Brzeźniak and S. Peszat, Hyperbolic equations with random boundary conditions, in Recent Development in Stochastic Dynamics and Stochastic Analysis (eds. J. Duan, S. Luo and C. Wang), vol. 8 of Interdisciplinary Mathematical Sciences, World Scientific, Singapore, 2010, 1-21. doi: 10.1142/9789814277266_0001.  Google Scholar

[9]

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solid, The Clarendon Press, Oxford University Press, New York, 1988.  Google Scholar

[10]

A. Chaudhuri and M. Sekhar, Stochastic modeling of solute transport in 3-D heterogeneous porous media with random source condition, Stochastic Environmental Research and Risk Assessment, 21 (2006), 159-173.  doi: 10.1007/s00477-006-0053-6.  Google Scholar

[11]

A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics, 21 (1987), 251-286.  doi: 10.1080/17442508708833459.  Google Scholar

[12]

I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential and Integral Equations, 17 (2004), 751-780.   Google Scholar

[13]

G. Da Prato and J. Zabczyk, Evolution equations with white-noise boundary conditions, Stochastics and Stochastics Reports, 42 (1993), 167-182.  doi: 10.1080/17442509308833817.  Google Scholar

[14]

G. Fabbri and B. Goldys, An LQ problem for the heat equation on the halfline with Dirichlet boundary control and noise, SIAM Journal on Control and Optimization, 48 (2009), 1473-1488.  doi: 10.1137/070711529.  Google Scholar

[15]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics, European Mathematical Society, Zürich, 2008.  Google Scholar

[16]

E. Hausenblas and P. A. Razafimandimby, Controllability and qualitative properties of the solutions to SPDEs driven by boundary Lévy noise, Stochastic Partial Differential Equations: Analysis and Computations, 3 (2015), 221-271.  doi: 10.1007/s40072-015-0047-9.  Google Scholar

[17]

W. A. Jury and H. Flühler, Transport of chemicals through soil: Mechanisms, models, and field applications, Advances in agronomy, 47 (1992), 141-201.  doi: 10.1016/S0065-2113(08)60490-3.  Google Scholar

[18]

A. Kreft and A. Zuber, On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions, Chemical Engineering Science, 33 (1978), 1471-1480.  doi: 10.1016/0009-2509(78)85196-3.  Google Scholar

[19]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I, vol. 181 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1972.  Google Scholar

[20]

C. Man and C. W. Tsai, Stochastic partial differential equation-based model for suspended sediment transport in surface water flows, Journal of Engineering Mechanics, 133 (2007), 422-430.  doi: 10.1061/(ASCE)0733-9399(2007)133:4(422).  Google Scholar

[21]

F. Masiero, A stochastic optimal control problem for the heat equation on the halfline with Dirichlet boundary-noise and boundary-control, Applied Mathematics & Optimization, 62 (2010), 253-294.  doi: 10.1007/s00245-010-9103-z.  Google Scholar

[22]

S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the haf-line, Transactions of the American Mathematical Society, 353 (2000), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.  Google Scholar

[23]

J. C. Parker and M. T. van Genuchten, Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport, Water Resources Research, 20 (1984), 866-872.  doi: 10.1029/WR020i007p00866.  Google Scholar

[24]

I. Pavlyukevich and M. Riedle, Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces, Stochastic Analysis and Applications, 33 (2015), 271-305.  doi: 10.1080/07362994.2014.988358.  Google Scholar

[25]

I. Pavlyukevich and I. M. Sokolov, One-dimensional space-discrete transport subject to Lévy perturbations, The Journal of Statistical Physics, 133 (2008), 205-215.  doi: 10.1007/s10955-008-9607-y.  Google Scholar

[26]

A. Pazy, Semigroups of Linear Operators and Applications toPartial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[27]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, vol. 113 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373.  Google Scholar

[28]

A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[29]

M. Riedle, Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, Potential Analysis, 42 (2015), 809-838.  doi: 10.1007/s11118-014-9458-x.  Google Scholar

[30]

A. V. Skorokhod, Limit theorems for stochastic processes, Theory of Probability and its Applications, 1 (1956), 289-319.   Google Scholar

[31]

G. Tessitore and J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, Journal of Evolution Equations, 6 (2006), 621-655.  doi: 10.1007/s00028-006-0280-9.  Google Scholar

[32]

H. Triebel, Theory of Function Spaces II, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[33]

K. Twardowska, On the approximation theorem of the Wong-Zakai type for the functional stochastic differential equations, Probability and Mathematical Statistics, 12 (1991), 319-334.   Google Scholar

[34]

P. P. Wang and C. Zheng, Contaminant transport models under random sources, Ground Water, 43 (2005), 423-433.   Google Scholar

[35]

W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, 2002.  Google Scholar

[36]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, The Annals of Mathematical Statistics, 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[37]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differential equations, International Journal of Engineering Science, 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

Figure 1.  A sample path of an $\alpha$-stable Lévy subordinator $Z$ with ${\bf E} \text{e}^{-\lambda Z_1} = \text{e}^{-\lambda^\alpha}$ for $\alpha = 0.9$ (a); solutions $t\mapsto u_D(t, x)$ of equation (2.2) with Dirichlet boundary noise for $\nu = -1$, $x = 1$ (b) and $\nu = 1$, $x = 1$ (d); the concentration curve $x\mapsto u_D(t, x)$ for $\nu = 1$, $t = 55$ (c)
Figure 2.  A sample path of a symmetric $\alpha$-stable Lévy process $Z$ with ${\bf{E}} \text{e}^{-\text{i} \lambda Z_1} = \text{e}^{-|\lambda|^\alpha}$ for $\alpha = 1.75$ (a); the solution $t\mapsto u_D(t, x)$ of equation (2.2) with Dirichlet boundary noise for $\nu = 1$, $x = 1$
Figure 3.  The scales $c(x)$ of the limiting distribution in the Dirichlet case for $\nu = \pm1, 0$ (left), and the Neumann case for $\nu = -1$ (right); $\alpha = 0.9$, $c = 1$
[1]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[2]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[3]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[4]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[9]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[12]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[13]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[18]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[19]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[20]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (268)
  • HTML views (423)
  • Cited by (0)

Other articles
by authors

[Back to Top]