• Previous Article
    Dirac-concentrations in an integro-pde model from evolutionary game theory
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments
February  2019, 24(2): 719-735. doi: 10.3934/dcdsb.2018204

The Rothe method for multi-term time fractional integral diffusion equations

1. 

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, 610225, Sichuan Province, China

2. 

Jagiellonian University in Krakow, Chair of Optimization and Control, ul. Lojasiewicza 6, 30348 Krakow, Poland

3. 

Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30348 Krakow, Poland

* Corresponding author: Shengda Zeng

Dedicated to Professor Zhenhai Liu on the occasion of his 60th birthday.

Received  July 2017 Revised  February 2018 Published  June 2018

Fund Project: Project supported by the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No. 3792/GGPJ/H2020/2017/0.

In this paper we study a class of multi-term time fractional integral diffusion equations. Results on existence, uniqueness and regularity of a strong solution are provided through the Rothe method. Several examples are given to illustrate the applicability of main results.

Citation: Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204
References:
[1]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Models and Numerical Methods, World Scientific, Boston, 2012. Google Scholar

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Math. Sci. Engrg., 190, London, 1993.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

V. J. ErvinN. Heuer and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), 572-591.  doi: 10.1137/050642757.  Google Scholar

[7]

W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Americal Mathematical Society, Providence, RI, International Press, Somerville, MA, 2002.  Google Scholar

[8]

R. Herrmann, Fractional Calculus: An Introduction for Physicists, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. doi: 10.1142/8934.  Google Scholar

[9]

J. Kačur, Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities, Czechoslovak Mathematical Journal, 34 (1984), 92-106.   Google Scholar

[10]

J. Kačur, Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik 80, B. G. Teubner, Leipzig, 1985.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[12]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.  doi: 10.1137/080718942.  Google Scholar

[13]

Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.  doi: 10.1016/j.jcp.2007.02.001.  Google Scholar

[14]

Z. H. LiuS. D. Zeng and Y. R. Bai, Maximum principles for multi-term space-time variable order fractional diffusion equations and their applications, Fract. Calc. Appl. Anal., 19 (2016), 188-211.  doi: 10.1515/fca-2016-0011.  Google Scholar

[15]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, London, 2010. doi: 10.1142/9781848163300.  Google Scholar

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[17]

A. Pazy, Semigroup of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[18]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.  Google Scholar

[19]

A. Raheem and D. Bahuguna, Rothe's method for solving some fractional integral diffusion equation, Appl. Math. Comput., 236 (2014), 161-168.  doi: 10.1016/j.amc.2014.03.025.  Google Scholar

[20]

S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal., 36 (1980), 147-168.  doi: 10.1016/0022-1236(80)90097-X.  Google Scholar

[21]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2005. Google Scholar

[22]

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman & Hall/CRC, Boca Raton, FL, 2006.  Google Scholar

[23]

Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 69 (2008), 637-646.  doi: 10.1016/j.na.2007.06.011.  Google Scholar

[24]

Y. B. Xiao and N. J. Huang, Sub-super-solution method for a class of higher order evolution hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 71 (2009), 558-570.  doi: 10.1016/j.na.2008.10.093.  Google Scholar

[25]

Q. YangI. TurnerF. Liu and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), 1159-1180.  doi: 10.1137/100800634.  Google Scholar

[26]

E. Zeidler, Nonlinear Functional Analysis and Applications Ⅱ A/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[27]

S. D. ZengD. BaleanuY. R. Bai and G. C. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.  doi: 10.1016/j.amc.2017.07.003.  Google Scholar

[28]

S. D. Zeng and S. Migórski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619-637.  doi: 10.1016/j.jmaa.2017.05.072.  Google Scholar

[29]

S. D. Zeng, Z. H. Liu and S. Migórski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69: 36 (2018), 1-23, in press. https://doi.org/10.1007/s00033-018-0929-6. doi: 10.1007/s00033-018-0929-6.  Google Scholar

[30]

S. D. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 34-48.  doi: 10.1016/j.cnsns.2017.07.016.  Google Scholar

[31]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems, 27 (2011), 035010, 12 pp. doi: 10.1088/0266-5611/27/3/035010.  Google Scholar

show all references

References:
[1]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Models and Numerical Methods, World Scientific, Boston, 2012. Google Scholar

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Math. Sci. Engrg., 190, London, 1993.  Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

V. J. ErvinN. Heuer and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), 572-591.  doi: 10.1137/050642757.  Google Scholar

[7]

W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Americal Mathematical Society, Providence, RI, International Press, Somerville, MA, 2002.  Google Scholar

[8]

R. Herrmann, Fractional Calculus: An Introduction for Physicists, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. doi: 10.1142/8934.  Google Scholar

[9]

J. Kačur, Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities, Czechoslovak Mathematical Journal, 34 (1984), 92-106.   Google Scholar

[10]

J. Kačur, Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik 80, B. G. Teubner, Leipzig, 1985.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[12]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.  doi: 10.1137/080718942.  Google Scholar

[13]

Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.  doi: 10.1016/j.jcp.2007.02.001.  Google Scholar

[14]

Z. H. LiuS. D. Zeng and Y. R. Bai, Maximum principles for multi-term space-time variable order fractional diffusion equations and their applications, Fract. Calc. Appl. Anal., 19 (2016), 188-211.  doi: 10.1515/fca-2016-0011.  Google Scholar

[15]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, London, 2010. doi: 10.1142/9781848163300.  Google Scholar

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.  Google Scholar

[17]

A. Pazy, Semigroup of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[18]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.  Google Scholar

[19]

A. Raheem and D. Bahuguna, Rothe's method for solving some fractional integral diffusion equation, Appl. Math. Comput., 236 (2014), 161-168.  doi: 10.1016/j.amc.2014.03.025.  Google Scholar

[20]

S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal., 36 (1980), 147-168.  doi: 10.1016/0022-1236(80)90097-X.  Google Scholar

[21]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2005. Google Scholar

[22]

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman & Hall/CRC, Boca Raton, FL, 2006.  Google Scholar

[23]

Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 69 (2008), 637-646.  doi: 10.1016/j.na.2007.06.011.  Google Scholar

[24]

Y. B. Xiao and N. J. Huang, Sub-super-solution method for a class of higher order evolution hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 71 (2009), 558-570.  doi: 10.1016/j.na.2008.10.093.  Google Scholar

[25]

Q. YangI. TurnerF. Liu and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), 1159-1180.  doi: 10.1137/100800634.  Google Scholar

[26]

E. Zeidler, Nonlinear Functional Analysis and Applications Ⅱ A/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[27]

S. D. ZengD. BaleanuY. R. Bai and G. C. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.  doi: 10.1016/j.amc.2017.07.003.  Google Scholar

[28]

S. D. Zeng and S. Migórski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619-637.  doi: 10.1016/j.jmaa.2017.05.072.  Google Scholar

[29]

S. D. Zeng, Z. H. Liu and S. Migórski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69: 36 (2018), 1-23, in press. https://doi.org/10.1007/s00033-018-0929-6. doi: 10.1007/s00033-018-0929-6.  Google Scholar

[30]

S. D. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 34-48.  doi: 10.1016/j.cnsns.2017.07.016.  Google Scholar

[31]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems, 27 (2011), 035010, 12 pp. doi: 10.1088/0266-5611/27/3/035010.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[16]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (180)
  • HTML views (474)
  • Cited by (0)

Other articles
by authors

[Back to Top]