Advanced Search
Article Contents
Article Contents

Dirac-concentrations in an integro-pde model from evolutionary game theory

The first author is supported by NSF grant DMS-1411476

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Motivated by the existence of moving Dirac-concentrations in the time-dependent problem, we study the qualitative properties of steady states in the limit of small diffusion. Under different conditions on the growth rate and interaction kernel as motivated by the framework of adaptive dynamics, we will show that as the diffusion rate tends to zero the steady state concentrates (ⅰ) at a single location; (ⅱ) at two locations simultaneously; or (ⅲ) at one of two alternative locations. The third result in particular shows that solutions need not be unique. This marks an important difference of the non-local equation with its local counterpart.

    Mathematics Subject Classification: Primary: 35K55, 35F21, 92D15; Secondary: 47G20, 49L25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The left, center and right panels illustrate the sign of $\frac{K(x,y)}{r(x)} - \frac{K(y,y)}{r(y)}$ as a function of $x$ and $y$, under the assumptions of Theorems 1, 2 and 3 respectively. Here $x$ and $y$ are the strategy of the invader and resident species respectively. $\frac{K(x,y)}{r(x)} - \frac{K(y,y)}{r(y)} < 0$ (resp. $>0$) means invasion of resident with strategy ''$y$" by invader with strategy ''$x$" is a success (resp. failure)

  •   A. S. Ackleh , J. Cleveland  and  H. R. Thieme , Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, J. Differential Equations, 261 (2016) , 1472-1505.  doi: 10.1016/j.jde.2016.04.008.
      G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, 49-109, Lecture Notes in Math., 2074, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-36433-4_2.
      R. Bürger , Perturbations of positive semigroups and applications to population genetics, Math. Z., 197 (1988) , 259-272.  doi: 10.1007/BF01215194.
      N. Champagnat , R. Ferrière  and  S. et Mèlèard , Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theor. Popul. Biol., 69 (2006) , 297-321.  doi: 10.1016/j.tpb.2005.10.004.
      R. Cressman  and  J. Hofbauer , Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics, Theor. Pop. Biol., 67 (2005) , 47-59.  doi: 10.1016/j.tpb.2004.08.001.
      L. Desvillettes , P.-E. Jabin , S. Mischler  and  G. Raoul , On mutation-selection dynamics, Commun. Math. Sci., 6 (2008) , 729-747.  doi: 10.4310/CMS.2008.v6.n3.a10.
      O. Diekmann , A beginner's guide to adaptive dynamics, Banach Center Publications, 63 (2004) , 47-86. 
      O. Diekmann , P.-E. Jabin , S. Mischler  and  B. Perthame , The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Pop. Biol., 67 (2005) , 257-271.  doi: 10.1016/j.tpb.2004.12.003.
      J. Dockery , V. Hutson , K. Mischaikow  and  M. Pernarowski , The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998) , 61-83.  doi: 10.1007/s002850050120.
      R. A. Fisher, The Genetical Theory of Natural Selection, Oxford University Press, Oxford, 1999.
      W. Hao , K.-Y. Lam  and  Y. Lou , Concentration phenomena in an integro-PDE model for evolution of conditional dispersal, Indiana Univ. Math. J., 272 (2017) , 1755-1790.  doi: 10.1016/j.jfa.2016.11.017.
      S. Gandon  and  S. Mirrahimi , A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, Comptes Rendus Mathematique, 355 (2016) , 155-160.  doi: 10.1016/j.crma.2016.12.001.
      A. Hastings , Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983) , 244-251.  doi: 10.1016/0040-5809(83)90027-8.
      J. Húska , Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Differential Equations, 226 (2006) , 541-557.  doi: 10.1016/j.jde.2006.02.008.
      S. F. Iglesias and S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time periodic environments, arXiv: 1803.03547 [math. AP].
      M. Kimura , A stochastic model concerning the maintenance of genetic variability in quantitative characters, Proc. Natl. Acad. Sci. USA, 54 (1965) , 731-736.  doi: 10.1073/pnas.54.3.731.
      K.-Y. Lam  and  Y. Lou , Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 76 (2014) , 261-291.  doi: 10.1007/s11538-013-9901-y.
      K.-Y. Lam  and  Y. Lou , An integro-PDE model for evolution of random dispersal, J. Funct. Anal., 272 (2017) , 1755-1790.  doi: 10.1016/j.jfa.2016.11.017.
      K. -Y. Lam, Stability of Dirac concentrations in an integro-PDE model for evolution of dispersal, Calc. Var. Partial Differential Equations, 56 (2017), Art. 79, 32pp. doi: 10.1007/s00526-017-1157-1.
      G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.
      A. Lorz , S. Mirrahimi  and  B. Perthame , Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Diff. Equations, 36 (2011) , 1071-1098.  doi: 10.1080/03605302.2010.538784.
      P. Magal  and  G. F. Webb , Mutation, selection, and recombination in a model of phenotype evolution, Discrete Cont. Dynam. Syst., 6 (2000) , 221-236. 
      G. Meszèna , M. Gyllenberg , F. J. Jacobs  and  J. A. J. Metz , Link between population dynamics and dynamics of darwinian evolution, Phys. Rev. Lett., 95 (2005) , 78-105. 
      B. Perthame  and  P. E. Souganidis , Rare mutations limit of a steady state dispersal evolution model, Math. Model. Nat. Phenom., 11 (2016) , 154-166.  doi: 10.1051/mmnp/201611411.
      M. V. Safonov  and  N. V. Krylov , A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980) , 161-175. 
      A. Sasaki , Clumped distribution by neighborhood competition, J. Theor. Biol., 186 (1997) , 415-430. 
      H. Smith and H. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118, American Mathematical Society, Providence, RI, 2011.
      L. Sun , J. Shi  and  Y. Wang , Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013) , 1267-1278.  doi: 10.1007/s00033-012-0286-9.
      J. Wickman , S. Diehl , C. A. Kausmeier , A. B. Ryabov  and  A. Brännström , Determining selection across heterogeneous landscapes: A perturbation-based method and its application to modeling evolution in space, Am. Nat., 189 (2017) , 381-395.  doi: 10.1086/690908.
  • 加载中



Article Metrics

HTML views(656) PDF downloads(253) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint