February  2019, 24(2): 755-781. doi: 10.3934/dcdsb.2018206

Valuation of American strangle option: Variational inequality approach

1. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

* Corresponding author: Jehan Oh

Received  August 2017 Revised  March 2018 Published  June 2018

Fund Project: The first author gratefully acknowledges the support of the National Research Foundation of Korea grant funded by the Korea government (Grant No. NRF-2017R1C1B1001811), BK21 PLUS SNU Mathematical Sciences Division and the POSCO Science Fellowship of POSCO TJ Park Foundation.

In this paper, we investigate a parabolic variational inequality problem associated with the American strangle option pricing. We obtain the existence and uniqueness of $W^{2, 1}_{p, \rm{loc}}$ solution to the problem. Also, we analyze the smoothness and monotonicity of two free boundaries. Finally, numerical results of the model based on this problem are described and used to show the boundary properties and the price behavior.

Citation: Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206
References:
[1]

J. S. Chaput and L. H. Ederington, Volatility trade design, Journal of Futures Markets, 25 (2005), 243-279.  doi: 10.1002/fut.20142.  Google Scholar

[2]

X. ChenF. Yi and L. Wang, American lookback option with fixed strike price-2-D parabolic variational inequality, J. Differential Equations, 251 (2011), 3063-3089.  doi: 10.1016/j.jde.2011.07.027.  Google Scholar

[3]

C. Chiarella and A. Ziogas, Evaluation of American strangles, Journal of Economic Dynamics and Control, 29 (2005), 31-62.  doi: 10.1016/j.jedc.2003.04.010.  Google Scholar

[4]

A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal., 18 (1975), 151-176.  doi: 10.1016/0022-1236(75)90022-1.  Google Scholar

[5]

A. Friedman, Variational Principles and Free-Boundary Problems, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[6]

L. Jiang, Existence and differentiability of the solution of a two-phase Stefan problem for quasilinear parabolic equations, Acta Math. Sinica, 15 (1965), 749-764.   Google Scholar

[7]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[8]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[9]

J. MaW. Li and Z. Cui, Valuation of American strangles through an optimized lower-upper bound approach, Journal of Operations Research Society of China, 6 (2018), 25-47.  doi: 10.1007/s40305-017-0174-2.  Google Scholar

[10]

S. Qiu, American Strangle Options, Research Report, School of Mathematics, The University of Manchester, 2014. Google Scholar

[11]

K. Tso, On an Aleksandrov-Bakel'man type maximum principle for second-order parabolic equations, Comm. Partial Differential Equations, 10 (1985), 543-553.  doi: 10.1080/03605308508820388.  Google Scholar

[12]

Z. Yang and F. Yi, Valuation of European installment put option: Variational inequality approach, Communications in Contemporary Mathematics, 11 (2009), 279-307.  doi: 10.1142/S0219199709003363.  Google Scholar

[13]

Z. Yang and F. Yi, A variational inequality arising from American installment call options pricing, J. Math. Anal. Appl., 357 (2009), 54-68.  doi: 10.1016/j.jmaa.2009.03.045.  Google Scholar

[14]

Z. YangF. Yi and M. Dai, A parabolic variational inequality arising from the valuation of strike reset options, J. Differential Equations, 230 (2006), 481-501.  doi: 10.1016/j.jde.2006.07.026.  Google Scholar

[15]

Z. YangF. Yi and X. Wang, A variational inequality arising from European installment call options pricing, SIAM Journal on Mathematical Analysis, 40 (2008), 306-326.  doi: 10.1137/060670353.  Google Scholar

show all references

References:
[1]

J. S. Chaput and L. H. Ederington, Volatility trade design, Journal of Futures Markets, 25 (2005), 243-279.  doi: 10.1002/fut.20142.  Google Scholar

[2]

X. ChenF. Yi and L. Wang, American lookback option with fixed strike price-2-D parabolic variational inequality, J. Differential Equations, 251 (2011), 3063-3089.  doi: 10.1016/j.jde.2011.07.027.  Google Scholar

[3]

C. Chiarella and A. Ziogas, Evaluation of American strangles, Journal of Economic Dynamics and Control, 29 (2005), 31-62.  doi: 10.1016/j.jedc.2003.04.010.  Google Scholar

[4]

A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Funct. Anal., 18 (1975), 151-176.  doi: 10.1016/0022-1236(75)90022-1.  Google Scholar

[5]

A. Friedman, Variational Principles and Free-Boundary Problems, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[6]

L. Jiang, Existence and differentiability of the solution of a two-phase Stefan problem for quasilinear parabolic equations, Acta Math. Sinica, 15 (1965), 749-764.   Google Scholar

[7]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.  Google Scholar

[8]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[9]

J. MaW. Li and Z. Cui, Valuation of American strangles through an optimized lower-upper bound approach, Journal of Operations Research Society of China, 6 (2018), 25-47.  doi: 10.1007/s40305-017-0174-2.  Google Scholar

[10]

S. Qiu, American Strangle Options, Research Report, School of Mathematics, The University of Manchester, 2014. Google Scholar

[11]

K. Tso, On an Aleksandrov-Bakel'man type maximum principle for second-order parabolic equations, Comm. Partial Differential Equations, 10 (1985), 543-553.  doi: 10.1080/03605308508820388.  Google Scholar

[12]

Z. Yang and F. Yi, Valuation of European installment put option: Variational inequality approach, Communications in Contemporary Mathematics, 11 (2009), 279-307.  doi: 10.1142/S0219199709003363.  Google Scholar

[13]

Z. Yang and F. Yi, A variational inequality arising from American installment call options pricing, J. Math. Anal. Appl., 357 (2009), 54-68.  doi: 10.1016/j.jmaa.2009.03.045.  Google Scholar

[14]

Z. YangF. Yi and M. Dai, A parabolic variational inequality arising from the valuation of strike reset options, J. Differential Equations, 230 (2006), 481-501.  doi: 10.1016/j.jde.2006.07.026.  Google Scholar

[15]

Z. YangF. Yi and X. Wang, A variational inequality arising from European installment call options pricing, SIAM Journal on Mathematical Analysis, 40 (2008), 306-326.  doi: 10.1137/060670353.  Google Scholar

Figure 1.  The change of the option value function $V(t, s)$ with respect to stock price $s$ where $r = 0.05, \;q = 0.1, \;\sigma = 0.3, \;K_1 = 1$ and $K_2 = 1.5$
Figure 2.  The change of the free boundaries $A(\tau)$ and $B(\tau)$ with respect to $\sigma$ where $r = 0.05, \;q = 0.05, \;K_1 = 1$ and $K_2 = 1.1$
Figure 3.  Compare the free boundary $B(\tau)$ and the free boundary $F_{c}(\tau)$ with $r = 0.05, \;q = 0.05, \;\sigma = 0.2, \;K_1 = 1$ and $K_2 = 1.1$
Figure 4.  Compare the free boundary $A(\tau)$ and the free boundary $F_{p}(\tau)$ with $r = 0.05, \;q = 0.05, \;\sigma = 0.2, \;K_1 = 1$ and $K_2 = 1.1$
Figure 5.  Upper and lower bounds of $A(\tau)$ and the free boundary $B(\tau)$, respectively, with $r = 0.05, \;q = 0.05, \;\sigma = 0.2, \;K_1 = 1$ and $K_2 = 1.1$
[1]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[5]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[6]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[7]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[10]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[11]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[16]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[18]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[19]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[20]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (163)
  • HTML views (397)
  • Cited by (0)

Other articles
by authors

[Back to Top]