• PDF
• Cite
• Share
Article Contents  Article Contents

# Valuation of American strangle option: Variational inequality approach

• * Corresponding author: Jehan Oh

The first author gratefully acknowledges the support of the National Research Foundation of Korea grant funded by the Korea government (Grant No. NRF-2017R1C1B1001811), BK21 PLUS SNU Mathematical Sciences Division and the POSCO Science Fellowship of POSCO TJ Park Foundation

• In this paper, we investigate a parabolic variational inequality problem associated with the American strangle option pricing. We obtain the existence and uniqueness of $W^{2, 1}_{p, \rm{loc}}$ solution to the problem. Also, we analyze the smoothness and monotonicity of two free boundaries. Finally, numerical results of the model based on this problem are described and used to show the boundary properties and the price behavior.

Mathematics Subject Classification: Primary: 35R35; Secondary: 91G80.

 Citation: • • Figure 1.  The change of the option value function $V(t, s)$ with respect to stock price $s$ where $r = 0.05, \;q = 0.1, \;\sigma = 0.3, \;K_1 = 1$ and $K_2 = 1.5$

Figure 2.  The change of the free boundaries $A(\tau)$ and $B(\tau)$ with respect to $\sigma$ where $r = 0.05, \;q = 0.05, \;K_1 = 1$ and $K_2 = 1.1$

Figure 3.  Compare the free boundary $B(\tau)$ and the free boundary $F_{c}(\tau)$ with $r = 0.05, \;q = 0.05, \;\sigma = 0.2, \;K_1 = 1$ and $K_2 = 1.1$

Figure 4.  Compare the free boundary $A(\tau)$ and the free boundary $F_{p}(\tau)$ with $r = 0.05, \;q = 0.05, \;\sigma = 0.2, \;K_1 = 1$ and $K_2 = 1.1$

Figure 5.  Upper and lower bounds of $A(\tau)$ and the free boundary $B(\tau)$, respectively, with $r = 0.05, \;q = 0.05, \;\sigma = 0.2, \;K_1 = 1$ and $K_2 = 1.1$

• ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint