In this paper, we investigate a two-species weak competition system of reaction-diffusion-advection with double free boundaries that represent the expanding front in a one-dimensional habitat, where a combination of random movement and advection is adopted by two competing species. The main goal is to understand the effect of small advection environment and dynamics of the two species through double free boundaries. We provide a spreading-vanishing dichotomy, which means that both of the two species either spread to the entire space successfully and survive in the new environment as time goes to infinity, or vanish and become extinct in the long run. Furthermore, if the spreading or vanishing of the two species occurs, some sufficient conditions via the initial data are established. When spreading of the two species happens, the long time behavior of solutions and estimates of spreading speed of both free boundaries are obtained.
Citation: |
I. E. Averill, The Effect of Intermediate Advection on Two Competing Species, Ph. D thesis, The Ohio State University in Columbus, 2012.
![]() |
|
G. Bunting
, Y. H. Du
and K. Krakowski
, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012)
, 583-603.
doi: 10.3934/nhm.2012.7.583.![]() ![]() ![]() |
|
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons Ltd., Chichester, UK, 2003.
doi: 10.1002/0470871296.![]() ![]() ![]() |
|
R. S. Cantrell
, C. Cosner
and Y. Lou
, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007)
, 497-518.
doi: 10.1017/S0308210506000047.![]() ![]() ![]() |
|
X. F. Chen
, K. Y. Lam
and Y. Lou
, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012)
, 3841-3859.
doi: 10.3934/dcds.2012.32.3841.![]() ![]() ![]() |
|
Q. L. Chen
, F. Q. Li
and F. Wang
, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA Journal of Applied Mathematics, 82 (2017)
, 445-470.
doi: 10.1093/imamat/hxw059.![]() ![]() |
|
Y. H. Du
and Z. M. Guo
, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary Ⅱ, J. Differential Equations, 250 (2011)
, 4336-4366.
doi: 10.1016/j.jde.2011.02.011.![]() ![]() ![]() |
|
Y. H. Du
and Z. M. Guo
, The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012)
, 996-1035.
doi: 10.1016/j.jde.2012.04.014.![]() ![]() ![]() |
|
Y. H. Du
, Z. M. Guo
and R. Peng
, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013)
, 2089-2142.
doi: 10.1016/j.jfa.2013.07.016.![]() ![]() ![]() |
|
Y. H. Du
and Z. G. Lin
, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010)
, 377-405.
doi: 10.1137/090771089.![]() ![]() ![]() |
|
Y. H. Du
and Z. G. Lin
, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. (ser. B), 19 (2014)
, 3105-3132.
doi: 10.3934/dcdsb.2014.19.3105.![]() ![]() ![]() |
|
Y. H. Du
and B. D. Lou
, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015)
, 2673-2724.
doi: 10.4171/JEMS/568.![]() ![]() ![]() |
|
Y. H. Du
and L. Ma
, Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001)
, 107-124.
doi: 10.1017/S0024610701002289.![]() ![]() ![]() |
|
H. Gu
, Z. G. Lin
and B. D. Lou
, Long time behavior of solutions of a diffusion-advection logistic model with free boundaries, Appl. Math. Lett., 37 (2014)
, 49-53.
doi: 10.1016/j.aml.2014.05.015.![]() ![]() ![]() |
|
H. Gu
, Z. G. Lin
and B. D. Lou
, Different asymptotic spreading speeds induced by advection in a diffusion problem with free boundaries, Proc. Amer. Math. Soc., 143 (2015)
, 1109-1117.
doi: 10.1090/S0002-9939-2014-12214-3.![]() ![]() ![]() |
|
H. Gu
and B. D. Lou
, Spreading in advective environment modeled by a reaction diffusion equation with free boundaries, J. Differential Equations, 260 (2016)
, 3991-4015.
doi: 10.1016/j.jde.2015.11.002.![]() ![]() ![]() |
|
H. Gu
, B. D. Lou
and M. L. Zhou
, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015)
, 1714-1768.
doi: 10.1016/j.jfa.2015.07.002.![]() ![]() ![]() |
|
J. S. Guo
and C. H. Wu
, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012)
, 873-895.
doi: 10.1007/s10884-012-9267-0.![]() ![]() ![]() |
|
J. S. Guo
and C. H. Wu
, Dynamics for a two-species competition-diffusion model with two free boundaries, Nonlinearity, 28 (2015)
, 1-27.
doi: 10.1088/0951-7715/28/1/1.![]() ![]() ![]() |
|
D. Hilhorst
, M. Iida
, M. Mimura
and H. Ninomiya
, A competition-diffusion system approximation to the classical two-phase Stefan problem, Japan J. Indust. Appl. Math., 18 (2001)
, 161-180.
doi: 10.1007/BF03168569.![]() ![]() ![]() |
|
D. Hilhorst
, M. Mimura
and R. Schatzle
, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Anal. Real World Appl., 4 (2003)
, 261-285.
doi: 10.1016/S1468-1218(02)00009-3.![]() ![]() ![]() |
|
Y. Kaneko
and H. Matsuzawa
, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015)
, 43-76.
doi: 10.1016/j.jmaa.2015.02.051.![]() ![]() ![]() |
|
A. N. Kolmogorov
, I. G. Petrovsky
and N. S. Piskunov
, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique, Bull. Univ. Moskov. Ser. Internat., (1937)
, 1-25.
![]() |
|
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Academic Press, New York, London, 1968.
![]() |
|
C. X. Lei
, Z. G. Lin
and Q. Y. Zhang
, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014)
, 145-166.
doi: 10.1016/j.jde.2014.03.015.![]() ![]() ![]() |
|
M. Li
and Z. G. Lin
, The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. (Ser. B), 20 (2015)
, 2089-2105.
doi: 10.3934/dcdsb.2015.20.2089.![]() ![]() ![]() |
|
Z. G. Lin
, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007)
, 1883-1892.
doi: 10.1088/0951-7715/20/8/004.![]() ![]() ![]() |
|
N. A. Maidana
and H. M. Yang
, Spatial spreading of West Nile virus described by traveling waves, J. Theoret. Biol., 258 (2009)
, 403-417.
doi: 10.1016/j.jtbi.2008.12.032.![]() ![]() ![]() |
|
M. Mimura
, Y. Yamada
and S. Yotsutani
, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985)
, 151-186.
doi: 10.1007/BF03167042.![]() ![]() ![]() |
|
M. Mimura
, Y. Yamada
and S. Yotsutani
, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986)
, 477-498.
![]() |
|
M. Mimura
, Y. Yamada
and S. Yotsutani
, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987)
, 241-280.
![]() ![]() |
|
R. Peng
and X. Q. Zhao
, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013)
, 2007-2031.
doi: 10.3934/dcds.2013.33.2007.![]() ![]() ![]() |
|
M. X. Wang
, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014)
, 3365-3394.
doi: 10.1016/j.jde.2014.02.013.![]() ![]() ![]() |
|
M. X. Wang
, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016)
, 483-508.
doi: 10.1016/j.jfa.2015.10.014.![]() ![]() ![]() |
|
J. Wang
and L. Zhang
, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015)
, 377-398.
doi: 10.1016/j.jmaa.2014.09.055.![]() ![]() |
|
M. X. Wang
and Y. Zhang
, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017)
, 458-467.
doi: 10.1016/j.na.2017.01.005.![]() ![]() ![]() |
|
M. X. Wang
and J. F. Zhao
, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014)
, 655-672.
doi: 10.1007/s10884-014-9363-4.![]() ![]() ![]() |
|
C. H. Wu
, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discrete Contin. Dyn. Syst. (Ser. B), 18 (2013)
, 2441-2455.
doi: 10.3934/dcdsb.2013.18.2441.![]() ![]() ![]() |
|
C. H. Wu
, The minimal habitat size for spreading in a weak competition system with two free boundaries, J. Differential Equations, 259 (2015)
, 873-897.
doi: 10.1016/j.jde.2015.02.021.![]() ![]() ![]() |
|
J. F. Zhao
and M. X. Wang
, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014)
, 250-263.
doi: 10.1016/j.nonrwa.2013.10.003.![]() ![]() ![]() |
|
P. Zhou
and D. M. Xiao
, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014)
, 1927-1954.
doi: 10.1016/j.jde.2013.12.008.![]() ![]() ![]() |