-
Previous Article
Traveling wave solutions for a bacteria system with density-suppressed motility
- DCDS-B Home
- This Issue
-
Next Article
Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two
Global weak solutions for a coupled chemotaxis non-Newtonian fluid
University of Sousse, Higher Institute of Applied Sciences and Technology of Sousse, Ibn Khaldoun District, Sousse 4003, Tunisia |
This paper focuses on the mathematical analysis of a self-suggested model arising from biology, consisting of dynamics of oxygen diffusion and consumption, chemotaxis process and viscous incompressible non-Newtonian fluid in a bounded domain $Ω \subset \mathbb{R}^d$, with $d = 2, 3.$ The viscosity of the studied fluid is supposed to be non constant and depends on the shear-rate $|{\bf{D}}\boldsymbol{v}|$ as well as the cell density $m$ and the oxygen concentration $c$. Nonlinearities are also considered in the diffusion terms for the convection-diffusion equations corresponding to $m$ and $c$. Under the choice of suitable structures and convenient assumptions for the nonlinear fluxes, we prove global existence of weak solutions, in the case of a smooth bounded domain subject to Navier's slip conditions at the boundary and for large range of initial data.
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Mod. Meth. Appl. S., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin Heidelberg, 1976. |
[3] |
L. Boccardo and F. Murat,
Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597.
doi: 10.1016/0362-546X(92)90023-8. |
[4] |
M. Braukhoff,
Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth, Ann. Inst. H. Poincaré (C) Non Linear Anal., 34 (2017), 1013-1039.
doi: 10.1016/j.anihpc.2016.08.003. |
[5] |
M. Bulíček, E. Feireisl and J. Málek,
A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal., 10 (2009), 992-1015.
doi: 10.1016/j.nonrwa.2007.11.018. |
[6] |
M. Bulíček, J. Málek and K. R. Rajagopal,
Navier's slip and evolutionary Navier Stokes like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.
doi: 10.1512/iumj.2007.56.2997. |
[7] |
M. Bulíček, J. Málek and K.R. Rajagopal,
Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, in Partial Differential Equations and Fluid Mechanics, 364 (2009), 26-53.
|
[8] |
M. A. J. Chaplain, M. Ganesh and I. G. Graham,
Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth, J. Math. Biol., 42 (2001), 387-423.
doi: 10.1007/s002850000067. |
[9] |
T. Clopeau, A. Mikelić and R. Robert,
On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625-1636.
doi: 10.1088/0951-7715/11/6/011. |
[10] |
M. Di Francesco, A. Lorz and P. Markowich,
Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 1437-1453.
doi: 10.3934/dcds.2010.28.1437. |
[11] |
C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein and J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), 098103.
doi: 10.1103/PhysRevLett.93.098103. |
[12] |
R. Duan, A. Lorz and P. Markowich,
Global solutions to the coupled chemotaxis-fluid equations, Comm. Part. Diff. Eq., 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[13] |
R. Duan and Z. Xiang,
A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Notices, 7 (2014), 1833-1852.
doi: 10.1093/imrn/rns270. |
[14] |
M. Eisenbach, Chemotaxis, Imperial College Press, London, 2004. |
[15] |
J. Frehse, J. Málek and M. Steinhauer,
An existence result for fluids with shear dependent viscosity-steady flows, Nonlinear Anal, 30 (1997), 3041-3049.
doi: 10.1016/S0362-546X(97)00392-1. |
[16] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-state Problems, Springer-Verlag, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[17] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[18] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[19] |
E. Keller and L. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[20] |
E. Keller and L. Segel,
Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[21] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969. |
[22] |
J.-G. Liu and A. Lorz,
A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[23] |
A. Lorz,
Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507. |
[24] |
J. Málek, J. Nečas and K. R. Rajagopal,
Global analysis of the flows of fluids with shear and pressure dependent viscosities, Arch. Ration. Mech. Anal., 165 (2002), 243-269.
doi: 10.1007/s00205-002-0219-4. |
[25] |
J. Málek, J. Nečas, M. Rokyta and M. R${\rm{\dot u}}$žička, Weak and Measure-Valued Solutions to Evolutionnary PDE's, Chapman & Hall, London, 1996.
doi: 10.1007/978-1-4899-6824-1. |
[26] |
J. Málek and K. R. Rajagopal,
Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, in Handb. Differ. Equ.: Evol. Equ., 2 (2005), 371-459.
doi: 10.1016/S1874-5717(06)80008-3. |
[27] |
H. G. Othmer and T. Hillen,
The Diffusion Limit of Transport Equations II: Chemotaxis Equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.
doi: 10.1137/S0036139900382772. |
[28] |
K. J. Painter, P. K. Maini and H. G. Othmer,
Development and applications of a model for cellular response to multiple chemotactic cues, J. Math. Biol., 41 (2000), 285-314.
doi: 10.1007/s002850000035. |
[29] |
K. Painter and T. Hillen,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543.
|
[30] |
C. S. Patlak,
Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.
doi: 10.1007/BF02476407. |
[31] |
Y. Peng and Z. Xiang,
Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28 (2018), 455-487.
doi: 10.1142/S0218202518500239. |
[32] |
T. Roubícěk, A generalization of the Lions-Temam compact imbedding theorem, Časopis Pěst. Mat., 115 (1990), 338–342. https://www.researchgate.net/publication/265639524_A_generalization_of_the_Lions-Temam_compact_imbedding_theorem |
[33] |
J. Simon,
Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl.(4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[34] |
Y. Tao and M. Winkler,
Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914.
doi: 10.3934/dcds.2012.32.1901. |
[35] |
Y. Tao and M. Winkler,
Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with non-linear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002. |
[36] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein,
Bacterial swimming and oxygen tansport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
|
[37] |
D. Vorotnikov,
Weak solutions for a bioconvection model related to Bacillus subtilis, Commun. Math. Sci., 12 (2014), 545-563.
doi: 10.4310/CMS.2014.v12.n3.a8. |
[38] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[39] |
M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[40] |
M. Winkler,
Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Equations, 264 (2018), 6109-6151.
doi: 10.1016/j.jde.2018.01.027. |
[41] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4612-4838-5. |
[42] |
Q. Zhang and Y. Li,
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differential Equations, 259 (2015), 3730-3754.
doi: 10.1016/j.jde.2015.05.012. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Mod. Meth. Appl. S., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin Heidelberg, 1976. |
[3] |
L. Boccardo and F. Murat,
Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597.
doi: 10.1016/0362-546X(92)90023-8. |
[4] |
M. Braukhoff,
Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth, Ann. Inst. H. Poincaré (C) Non Linear Anal., 34 (2017), 1013-1039.
doi: 10.1016/j.anihpc.2016.08.003. |
[5] |
M. Bulíček, E. Feireisl and J. Málek,
A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal., 10 (2009), 992-1015.
doi: 10.1016/j.nonrwa.2007.11.018. |
[6] |
M. Bulíček, J. Málek and K. R. Rajagopal,
Navier's slip and evolutionary Navier Stokes like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.
doi: 10.1512/iumj.2007.56.2997. |
[7] |
M. Bulíček, J. Málek and K.R. Rajagopal,
Mathematical results concerning unsteady flows of chemically reacting incompressible fluids, in Partial Differential Equations and Fluid Mechanics, 364 (2009), 26-53.
|
[8] |
M. A. J. Chaplain, M. Ganesh and I. G. Graham,
Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumour growth, J. Math. Biol., 42 (2001), 387-423.
doi: 10.1007/s002850000067. |
[9] |
T. Clopeau, A. Mikelić and R. Robert,
On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11 (1998), 1625-1636.
doi: 10.1088/0951-7715/11/6/011. |
[10] |
M. Di Francesco, A. Lorz and P. Markowich,
Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), 1437-1453.
doi: 10.3934/dcds.2010.28.1437. |
[11] |
C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein and J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), 098103.
doi: 10.1103/PhysRevLett.93.098103. |
[12] |
R. Duan, A. Lorz and P. Markowich,
Global solutions to the coupled chemotaxis-fluid equations, Comm. Part. Diff. Eq., 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[13] |
R. Duan and Z. Xiang,
A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Notices, 7 (2014), 1833-1852.
doi: 10.1093/imrn/rns270. |
[14] |
M. Eisenbach, Chemotaxis, Imperial College Press, London, 2004. |
[15] |
J. Frehse, J. Málek and M. Steinhauer,
An existence result for fluids with shear dependent viscosity-steady flows, Nonlinear Anal, 30 (1997), 3041-3049.
doi: 10.1016/S0362-546X(97)00392-1. |
[16] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-state Problems, Springer-Verlag, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[17] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[18] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[19] |
E. Keller and L. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[20] |
E. Keller and L. Segel,
Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[21] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969. |
[22] |
J.-G. Liu and A. Lorz,
A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[23] |
A. Lorz,
Coupled chemotaxis fluid model, Math. Models Methods Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507. |
[24] |
J. Málek, J. Nečas and K. R. Rajagopal,
Global analysis of the flows of fluids with shear and pressure dependent viscosities, Arch. Ration. Mech. Anal., 165 (2002), 243-269.
doi: 10.1007/s00205-002-0219-4. |
[25] |
J. Málek, J. Nečas, M. Rokyta and M. R${\rm{\dot u}}$žička, Weak and Measure-Valued Solutions to Evolutionnary PDE's, Chapman & Hall, London, 1996.
doi: 10.1007/978-1-4899-6824-1. |
[26] |
J. Málek and K. R. Rajagopal,
Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, in Handb. Differ. Equ.: Evol. Equ., 2 (2005), 371-459.
doi: 10.1016/S1874-5717(06)80008-3. |
[27] |
H. G. Othmer and T. Hillen,
The Diffusion Limit of Transport Equations II: Chemotaxis Equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.
doi: 10.1137/S0036139900382772. |
[28] |
K. J. Painter, P. K. Maini and H. G. Othmer,
Development and applications of a model for cellular response to multiple chemotactic cues, J. Math. Biol., 41 (2000), 285-314.
doi: 10.1007/s002850000035. |
[29] |
K. Painter and T. Hillen,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543.
|
[30] |
C. S. Patlak,
Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.
doi: 10.1007/BF02476407. |
[31] |
Y. Peng and Z. Xiang,
Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28 (2018), 455-487.
doi: 10.1142/S0218202518500239. |
[32] |
T. Roubícěk, A generalization of the Lions-Temam compact imbedding theorem, Časopis Pěst. Mat., 115 (1990), 338–342. https://www.researchgate.net/publication/265639524_A_generalization_of_the_Lions-Temam_compact_imbedding_theorem |
[33] |
J. Simon,
Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl.(4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[34] |
Y. Tao and M. Winkler,
Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1901-1914.
doi: 10.3934/dcds.2012.32.1901. |
[35] |
Y. Tao and M. Winkler,
Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with non-linear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002. |
[36] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein,
Bacterial swimming and oxygen tansport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.
|
[37] |
D. Vorotnikov,
Weak solutions for a bioconvection model related to Bacillus subtilis, Commun. Math. Sci., 12 (2014), 545-563.
doi: 10.4310/CMS.2014.v12.n3.a8. |
[38] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[39] |
M. Winkler,
Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[40] |
M. Winkler,
Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Equations, 264 (2018), 6109-6151.
doi: 10.1016/j.jde.2018.01.027. |
[41] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4612-4838-5. |
[42] |
Q. Zhang and Y. Li,
Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differential Equations, 259 (2015), 3730-3754.
doi: 10.1016/j.jde.2015.05.012. |
[1] |
Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207 |
[2] |
Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 |
[3] |
Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022062 |
[4] |
Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783 |
[5] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[6] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[7] |
Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 |
[8] |
Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic and Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021 |
[9] |
Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083 |
[10] |
Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219 |
[11] |
Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279 |
[12] |
Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113 |
[13] |
Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355 |
[14] |
Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045 |
[15] |
Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991 |
[16] |
Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure and Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609 |
[17] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[18] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations and Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217 |
[19] |
Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146 |
[20] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]