April  2019, 24(4): 1569-1587. doi: 10.3934/dcdsb.2018220

Global existence and stability in a two-species chemotaxis system

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China

* Corresponding author: S. Guo

Received  December 2017 Revised  March 2018 Published  June 2018

Fund Project: The second author is supported by NSF of China (Grants No. 11671123).

This paper deals with the following two-species chemotaxis system
$\left\{ \begin{array}{*{35}{l}} \ \ {{u}_{t}}=\Delta u-{{\chi }_{1}}\nabla \cdot (u\nabla v)+{{\mu }_{1}}u(1-u-{{a}_{1}}w), & x\in \Omega ,t>0, & \\ \ \ {{v}_{t}}=\Delta v-v+h(w), & x\in \Omega ,t>0, & \\ \ \ {{w}_{t}}=\Delta w-{{\chi }_{2}}\nabla \cdot (w\nabla z)+{{\mu }_{2}}w(1-w-{{a}_{2}}u), & x\in \Omega ,t>0, & \\ \ \ {{z}_{t}}=\Delta z-z+h(u),& x\in \Omega ,t>0, & \\\end{array} \right.$
under homogeneous Neumann boundary conditions in a bounded domain
$Ω\subset\mathbb{R}^{n}$
with smooth boundary. The parameters in the system are positive and the signal production function h is a prescribed C1-regular function. The main objectives of this paper are two-fold: One is the existence and boundedness of global solutions, the other is the large time behavior of the global bounded solutions in three competition cases (i.e., a weak competition case, a partially strong competition case and a fully strong competition case). It is shown that the unique positive spatially homogeneous equilibrium
$(u_{*}, v_{*}, w_{*}, z_{*})$
may be globally attractive in the weak competition case (i.e.,
$0 < a_{1}, a_{2} < 1$
), while the constant stationary solution (0, h(1), 1, 0) may be globally attractive and globally stable in the partially strong competition case (i.e.,
$a_{1}>1>a_{2}>0$
). In the fully strong competition case (i.e.
$a_{1}, a_{2}>1$
), however, we can only obtain the local stability of the two semi-trivial stationary solutions (0, h(1), 1, 0) and (1, 0, 0, h(1)) and the instability of the positive spatially homogeneous
$(u_{*}, v_{*}, w_{*}, z_{*})$
. The matter which species ultimately wins out depends crucially on the starting advantage each species has.
Citation: Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220
References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J, 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[2]

T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 1253-1272.  doi: 10.3934/dcdsb.2017061.  Google Scholar

[3]

M. A. J. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Applied Mathematics Letters, 57 (2016), 1-6.  doi: 10.1016/j.aml.2015.12.001.  Google Scholar

[4]

X. ChenJ. HaoX. WangY. Wu and Y. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, Journal of Differential Equations, 257 (2014), 3102-3134.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[5]

A.-K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 13 (1989), 1091-1113.  doi: 10.1016/0362-546X(89)90097-7.  Google Scholar

[6]

S. Guo, Bifurcation and spatio-temporal patterns in a diffusive predator-prey system, Nonlinear Analysis: Real World Applications, 42 (2018), 448-477.  doi: 10.1016/j.nonrwa.2018.01.011.  Google Scholar

[7]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, Journal of Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.  Google Scholar

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[9]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences ⅱ, Jahresber Deutsch. Math.-Verein., 106 (2004), 51-69.   Google Scholar

[10]

K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72.  doi: 10.1016/j.na.2016.01.017.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[13]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[14]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems - Series B, 20 (2017), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[15]

D. Li and S. Guo, Bifurcation and stability of a Mimura-Tsujikawa model with nonlocal delay effect, Mathematical Methods in the Applied Sciences, 40 (2017), 2219-2247.   Google Scholar

[16]

D. Li and S. Guo, Stability and Hopf bifurcation in a reaction-diffusion model with chemotaxis and nonlocal delay effect, International Journal of Bifurcation and Chaos, 28 (2018), 1850046.  doi: 10.1142/S0218127418500463.  Google Scholar

[17]

P. L. Lions, Résolution de problemes elliptiques quasilinéaires, Archive for Rational Mechanics and Analysis, 74 (1980), 335-353.  doi: 10.1007/BF00249679.  Google Scholar

[18]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attractionrepulsion chemotaxis model, Mathematical Methods in the Applied Sciences, 38 (2015), 2537-2546.  doi: 10.1002/mma.3240.  Google Scholar

[19]

A. Lunardi, Asymptotic exponential stability in quasilinear parabolic equations, Nonlinear Analysis: Theory, Methods & Applications, 9 (1985), 563-586.  doi: 10.1016/0362-546X(85)90041-0.  Google Scholar

[20]

J. D. Murray, Mathematical Biology. Ⅱ Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag, New York, 2003.  Google Scholar

[21]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete and Continuous Dynamical Systems - Series B, 18 (2014), 2627-2646.  doi: 10.3934/dcdsb.2013.18.2627.  Google Scholar

[22]

E. Nakaguchi and K. Osaki, Lp-estimates of solutions to n-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation, Funkcialaj Ekvacioj, 59 (2016), 51-66.  doi: 10.1619/fesi.59.51.  Google Scholar

[23]

E. Nakaguchi and K. Osaki, et al., Global existence of solutions to an n-dimensional parabolicparabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka Journal of Mathematics, 55 (2018), 51-70.  Google Scholar

[24]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis: Theory, Methods & Applications, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[25]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375.  doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[26]

C. G. Simader, The weak Dirichlet and Neumann problem for the Laplacian in Lq for bounded and exterior domains. applications, In Nonlinear Analysis, Function Spaces and Applications Vol. 4, Springer, 119 (1990), 180-223.  Google Scholar

[27]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, Journal of Mathematical Biology, 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[28]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[29]

Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1.  Google Scholar

[30]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[31]

L. WangC. MuX. Hu and P. Zheng, Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, Journal of Differential Equations, 264 (2018), 3369-3401.  doi: 10.1016/j.jde.2017.11.019.  Google Scholar

[32]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[33]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Communications in Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[34]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis & Applications, 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[35]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, Journal of Nonlinear Science, 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.  Google Scholar

[36]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Zeitschrift für angewandte Mathematik und Physik, 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.  Google Scholar

[37]

S. Yan and S. Guo, Bifurcation phenomena in a Lotka-Volterra model with cross-diffusion and delay effect, International Journal of Bifurcation and Chaos 27 (2017), 1750105, 24pp. doi: 10.1142/S021812741750105X.  Google Scholar

[38]

P. ZhengC. MuR. Willie and X. Hu, Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity, Computers & Mathematics with Applications, 75 (2018), 1667-1675.  doi: 10.1016/j.camwa.2017.11.032.  Google Scholar

[39]

R. Zou and S. Guo, Bifurcation of reaction cross-diffusion systems, International Journal of Bifurcation and Chaos, 27 (2017), 1750049, 22pp.  doi: 10.1142/S0218127417500493.  Google Scholar

show all references

References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J, 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[2]

T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 1253-1272.  doi: 10.3934/dcdsb.2017061.  Google Scholar

[3]

M. A. J. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Applied Mathematics Letters, 57 (2016), 1-6.  doi: 10.1016/j.aml.2015.12.001.  Google Scholar

[4]

X. ChenJ. HaoX. WangY. Wu and Y. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, Journal of Differential Equations, 257 (2014), 3102-3134.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[5]

A.-K. Drangeid, The principle of linearized stability for quasilinear parabolic evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 13 (1989), 1091-1113.  doi: 10.1016/0362-546X(89)90097-7.  Google Scholar

[6]

S. Guo, Bifurcation and spatio-temporal patterns in a diffusive predator-prey system, Nonlinear Analysis: Real World Applications, 42 (2018), 448-477.  doi: 10.1016/j.nonrwa.2018.01.011.  Google Scholar

[7]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, Journal of Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.  Google Scholar

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[9]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences ⅱ, Jahresber Deutsch. Math.-Verein., 106 (2004), 51-69.   Google Scholar

[10]

K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Analysis, 135 (2016), 57-72.  doi: 10.1016/j.na.2016.01.017.  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[12]

K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[13]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[14]

J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete and Continuous Dynamical Systems - Series B, 20 (2017), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.  Google Scholar

[15]

D. Li and S. Guo, Bifurcation and stability of a Mimura-Tsujikawa model with nonlocal delay effect, Mathematical Methods in the Applied Sciences, 40 (2017), 2219-2247.   Google Scholar

[16]

D. Li and S. Guo, Stability and Hopf bifurcation in a reaction-diffusion model with chemotaxis and nonlocal delay effect, International Journal of Bifurcation and Chaos, 28 (2018), 1850046.  doi: 10.1142/S0218127418500463.  Google Scholar

[17]

P. L. Lions, Résolution de problemes elliptiques quasilinéaires, Archive for Rational Mechanics and Analysis, 74 (1980), 335-353.  doi: 10.1007/BF00249679.  Google Scholar

[18]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attractionrepulsion chemotaxis model, Mathematical Methods in the Applied Sciences, 38 (2015), 2537-2546.  doi: 10.1002/mma.3240.  Google Scholar

[19]

A. Lunardi, Asymptotic exponential stability in quasilinear parabolic equations, Nonlinear Analysis: Theory, Methods & Applications, 9 (1985), 563-586.  doi: 10.1016/0362-546X(85)90041-0.  Google Scholar

[20]

J. D. Murray, Mathematical Biology. Ⅱ Spatial Models and Biomedical Applications {Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag, New York, 2003.  Google Scholar

[21]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete and Continuous Dynamical Systems - Series B, 18 (2014), 2627-2646.  doi: 10.3934/dcdsb.2013.18.2627.  Google Scholar

[22]

E. Nakaguchi and K. Osaki, Lp-estimates of solutions to n-dimensional parabolic-parabolic system for chemotaxis with subquadratic degradation, Funkcialaj Ekvacioj, 59 (2016), 51-66.  doi: 10.1619/fesi.59.51.  Google Scholar

[23]

E. Nakaguchi and K. Osaki, et al., Global existence of solutions to an n-dimensional parabolicparabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka Journal of Mathematics, 55 (2018), 51-70.  Google Scholar

[24]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis: Theory, Methods & Applications, 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[25]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375.  doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[26]

C. G. Simader, The weak Dirichlet and Neumann problem for the Laplacian in Lq for bounded and exterior domains. applications, In Nonlinear Analysis, Function Spaces and Applications Vol. 4, Springer, 119 (1990), 180-223.  Google Scholar

[27]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, Journal of Mathematical Biology, 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[28]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[29]

Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1.  Google Scholar

[30]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[31]

L. WangC. MuX. Hu and P. Zheng, Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, Journal of Differential Equations, 264 (2018), 3369-3401.  doi: 10.1016/j.jde.2017.11.019.  Google Scholar

[32]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[33]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Communications in Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[34]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, Journal of Mathematical Analysis & Applications, 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[35]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, Journal of Nonlinear Science, 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.  Google Scholar

[36]

M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Zeitschrift für angewandte Mathematik und Physik, 69 (2018), Art. 69, 40 pp. doi: 10.1007/s00033-018-0935-8.  Google Scholar

[37]

S. Yan and S. Guo, Bifurcation phenomena in a Lotka-Volterra model with cross-diffusion and delay effect, International Journal of Bifurcation and Chaos 27 (2017), 1750105, 24pp. doi: 10.1142/S021812741750105X.  Google Scholar

[38]

P. ZhengC. MuR. Willie and X. Hu, Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity, Computers & Mathematics with Applications, 75 (2018), 1667-1675.  doi: 10.1016/j.camwa.2017.11.032.  Google Scholar

[39]

R. Zou and S. Guo, Bifurcation of reaction cross-diffusion systems, International Journal of Bifurcation and Chaos, 27 (2017), 1750049, 22pp.  doi: 10.1142/S0218127417500493.  Google Scholar

Figure 1.  Solutions of model (3) tend to a positive steady state with parameters (53) and initial condition (54)
[1]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[2]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[12]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (370)
  • HTML views (824)
  • Cited by (0)

Other articles
by authors

[Back to Top]