August  2018, 23(6): 2091-2119. doi: 10.3934/dcdsb.2018227

Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay

1. 

School of Mathematics and Computational Science, Hunan First Normal University, Changsha, 410205, China

2. 

College of Science, National University of Defense Technology, Changsha, 410073, China

3. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China

* Corresponding author: Jianhua Huang

Received  June 2016 Revised  May 2018 Published  July 2018

This paper is concerned with a class of advection hyperbolic-parabolic systems with nonlocal delay. We prove that the wave profile is described by a hybrid system that consists of an integral transformation and an ordinary differential equation. By considering the same problem for a properly parameterized system and the continuous dependence of the wave speed on the parameter involved, we obtain the existence and uniqueness of traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay under bistable assumption. The influence of advection on the propagation speed is also considered.

Citation: Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227
References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805.  doi: 10.1090/S0002-9947-99-02134-0.  Google Scholar

[2]

J. F. M. Al-Omari and S. A. Gourly, Monotone traveling fronts in age-structured reaction-diffusion model of a single species, J. Math. Biol., 45 (2002), 294-312.  doi: 10.1007/s002850200159.  Google Scholar

[3]

J. F. M. Al-Omari and S. A. Gourley, Monotone wave-fronts in a structured population model with distributed maturation delay, IMA J. Appl. Math., 70 (2005), 858-879.  doi: 10.1093/imamat/hxh073.  Google Scholar

[4]

P. B. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourly, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[5]

H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, in: H. Berestycki, Y. Pomeau (Eds. ), Nonlinear PDEs in Condensed Matter and Reactive Flows, in: NATO Sci. Ser. C, Kluwer, Dordrecht, 569 (2003), 11-48. doi: 10.1007/978-94-010-0307-0_2.  Google Scholar

[6]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497-572.  doi: 10.1016/S0294-1449(16)30229-3.  Google Scholar

[7]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346.  doi: 10.1088/0951-7715/17/1/018.  Google Scholar

[8]

N. F. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986. doi: 10.1002/bimj.4710310608.  Google Scholar

[9]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[10]

M. CenciniC. Lopez and D. Vergni, Reaction-Diffusion systems: Front propagation and spatial structures, Lecture Notes in Phys., 636 (2003), 187-210.  doi: 10.1007/978-3-540-39668-0_9.  Google Scholar

[11]

F. Chen, Travelling waves for a neural network, Electron. J. Differential Equations, 2003 (2003), 1-4.   Google Scholar

[12]

X. Chen, Generation and propagation of interfaces in reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[13]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[14]

X. Chen and J. S. Guo, Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (1992), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[15]

X. Chen and J. S. Guo, Uniqueness and existence of travelling waves of discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[16]

D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser., vol. 279, Longman Scientific Technical, Harlow, 1992.  Google Scholar

[17]

B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Ser. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[18]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure. Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[19]

P. C. Fife and J. B. McLeod, Phase transitions and generalized motion by mean curvature, Arch. Ration. Mech. Anal., 65 (1977), 355-361.   Google Scholar

[20]

B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection-Reaction, Progress in Nonlinear Differential Equations and their Applications, vol. 60. Birkh$ü$ser, Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4.  Google Scholar

[21]

S. A. Gourley, Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays, Math. Comput. Model., 32 (2000), 843-853.  doi: 10.1016/S0895-7177(00)00175-8.  Google Scholar

[22]

S. A. Gourley, Wave front solutions of a diffusive delay model for populations of Daphnia magna, Comput. Math. Appl., 42 (2001), 1421-1430.  doi: 10.1016/S0898-1221(01)00251-6.  Google Scholar

[23]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459 (2003), 1563-1579.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[24]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.  doi: 10.1137/S003614100139991.  Google Scholar

[25]

X. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310.  doi: 10.1007/s00332-003-0524-6.  Google Scholar

[26]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436.  doi: 10.1007/s10884-006-9065-7.  Google Scholar

[27]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[28]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[29]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr., 242 (2002), 148-164.  doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.  Google Scholar

[30]

L. Malaguti and C. Marcelli, The influence of convective effects on front propagation in certain diffusive models, in: V. Capasso (Ed. ), Mathematical Modelling and Computing in Biology and Medicine, 5th ESMTB Conference, 2002, Esculapio, Bologna, 1 (2003), 362-367.  Google Scholar

[31]

L. MalagutiC. Marcelli and S. Matucci, Front propagation in bistable reaction-diffusion-advection equations, Adv. Differential Equations, 9 (2004), 1143-1166.   Google Scholar

[32]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[33]

C. Ou and J. Wu, Existence and uniqueness of a wavefront in a delayed hyperbolic-parabolic model, Nonlinear Anal., 63 (2005), 364-387.  doi: 10.1016/j.na.2005.05.025.  Google Scholar

[34]

G. Raugel and J. Wu, Hyperbolic-parabolic equations with delayed non-local interaction: model derivation, wavefronts and global attractors, Preprint. Google Scholar

[35]

S. Ruan and D. Xiao, Stability of steady states and existence of traveling waves in a vector disease model, Proc. Roy. Soc. Edinburgh Ser. A, 134 (2004), 991-1011.  doi: 10.1017/S0308210500003590.  Google Scholar

[36]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.  doi: 10.1090/S0002-9947-1987-0891637-2.  Google Scholar

[37]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness, J. Differential Equations, 159 (1999), 1-54.  doi: 10.1006/jdeq.1999.3651.  Google Scholar

[38]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. Ⅱ. Existence, J. Differential Equations, 159 (1999), 55-101.  doi: 10.1006/jdeq.1999.3652.  Google Scholar

[39]

H. L. Smith and X. Q. Zhao, Global asymptotic stability of travelling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.  Google Scholar

[40]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations, J. Differential Equations, 93 (1991), 332-363.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[41]

J. W. H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[42]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI, 1994.  Google Scholar

[43]

Z. C. WangW. T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[44]

Z. C. WangW. T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[45]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, vol. 119, Springer, NewYork, 1986. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[46]

J. Wu and X. Zou, Traveling wave fronts of reaction diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[47]

X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321.  doi: 10.1016/S0377-0427(02)00363-1.  Google Scholar

show all references

References:
[1]

N. D. AlikakosP. W. Bates and X. Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc., 351 (1999), 2777-2805.  doi: 10.1090/S0002-9947-99-02134-0.  Google Scholar

[2]

J. F. M. Al-Omari and S. A. Gourly, Monotone traveling fronts in age-structured reaction-diffusion model of a single species, J. Math. Biol., 45 (2002), 294-312.  doi: 10.1007/s002850200159.  Google Scholar

[3]

J. F. M. Al-Omari and S. A. Gourley, Monotone wave-fronts in a structured population model with distributed maturation delay, IMA J. Appl. Math., 70 (2005), 858-879.  doi: 10.1093/imamat/hxh073.  Google Scholar

[4]

P. B. AshwinM. V. BartuccelliT. J. Bridges and S. A. Gourly, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 53 (2002), 103-122.  doi: 10.1007/s00033-002-8145-8.  Google Scholar

[5]

H. Berestycki, The influence of advection on the propagation of fronts in reaction-diffusion equations, in: H. Berestycki, Y. Pomeau (Eds. ), Nonlinear PDEs in Condensed Matter and Reactive Flows, in: NATO Sci. Ser. C, Kluwer, Dordrecht, 569 (2003), 11-48. doi: 10.1007/978-94-010-0307-0_2.  Google Scholar

[6]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497-572.  doi: 10.1016/S0294-1449(16)30229-3.  Google Scholar

[7]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346.  doi: 10.1088/0951-7715/17/1/018.  Google Scholar

[8]

N. F. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986. doi: 10.1002/bimj.4710310608.  Google Scholar

[9]

N. F. Britton, Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[10]

M. CenciniC. Lopez and D. Vergni, Reaction-Diffusion systems: Front propagation and spatial structures, Lecture Notes in Phys., 636 (2003), 187-210.  doi: 10.1007/978-3-540-39668-0_9.  Google Scholar

[11]

F. Chen, Travelling waves for a neural network, Electron. J. Differential Equations, 2003 (2003), 1-4.   Google Scholar

[12]

X. Chen, Generation and propagation of interfaces in reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[13]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[14]

X. Chen and J. S. Guo, Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (1992), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[15]

X. Chen and J. S. Guo, Uniqueness and existence of travelling waves of discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[16]

D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Res. Notes Math. Ser., vol. 279, Longman Scientific Technical, Harlow, 1992.  Google Scholar

[17]

B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Ser. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[18]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure. Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[19]

P. C. Fife and J. B. McLeod, Phase transitions and generalized motion by mean curvature, Arch. Ration. Mech. Anal., 65 (1977), 355-361.   Google Scholar

[20]

B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection-Reaction, Progress in Nonlinear Differential Equations and their Applications, vol. 60. Birkh$ü$ser, Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4.  Google Scholar

[21]

S. A. Gourley, Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays, Math. Comput. Model., 32 (2000), 843-853.  doi: 10.1016/S0895-7177(00)00175-8.  Google Scholar

[22]

S. A. Gourley, Wave front solutions of a diffusive delay model for populations of Daphnia magna, Comput. Math. Appl., 42 (2001), 1421-1430.  doi: 10.1016/S0898-1221(01)00251-6.  Google Scholar

[23]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A, 459 (2003), 1563-1579.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[24]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model, SIAM J. Math. Anal., 35 (2003), 806-822.  doi: 10.1137/S003614100139991.  Google Scholar

[25]

X. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310.  doi: 10.1007/s00332-003-0524-6.  Google Scholar

[26]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436.  doi: 10.1007/s10884-006-9065-7.  Google Scholar

[27]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[28]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.  doi: 10.1016/j.jde.2004.07.014.  Google Scholar

[29]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms, Math. Nachr., 242 (2002), 148-164.  doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.  Google Scholar

[30]

L. Malaguti and C. Marcelli, The influence of convective effects on front propagation in certain diffusive models, in: V. Capasso (Ed. ), Mathematical Modelling and Computing in Biology and Medicine, 5th ESMTB Conference, 2002, Esculapio, Bologna, 1 (2003), 362-367.  Google Scholar

[31]

L. MalagutiC. Marcelli and S. Matucci, Front propagation in bistable reaction-diffusion-advection equations, Adv. Differential Equations, 9 (2004), 1143-1166.   Google Scholar

[32]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[33]

C. Ou and J. Wu, Existence and uniqueness of a wavefront in a delayed hyperbolic-parabolic model, Nonlinear Anal., 63 (2005), 364-387.  doi: 10.1016/j.na.2005.05.025.  Google Scholar

[34]

G. Raugel and J. Wu, Hyperbolic-parabolic equations with delayed non-local interaction: model derivation, wavefronts and global attractors, Preprint. Google Scholar

[35]

S. Ruan and D. Xiao, Stability of steady states and existence of traveling waves in a vector disease model, Proc. Roy. Soc. Edinburgh Ser. A, 134 (2004), 991-1011.  doi: 10.1017/S0308210500003590.  Google Scholar

[36]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302 (1987), 587-615.  doi: 10.1090/S0002-9947-1987-0891637-2.  Google Scholar

[37]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness, J. Differential Equations, 159 (1999), 1-54.  doi: 10.1006/jdeq.1999.3651.  Google Scholar

[38]

W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities. Ⅱ. Existence, J. Differential Equations, 159 (1999), 55-101.  doi: 10.1006/jdeq.1999.3652.  Google Scholar

[39]

H. L. Smith and X. Q. Zhao, Global asymptotic stability of travelling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.  Google Scholar

[40]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations, J. Differential Equations, 93 (1991), 332-363.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[41]

J. W. H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I, Travelling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A, 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[42]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr., vol. 140, Amer. Math. Soc., Providence, RI, 1994.  Google Scholar

[43]

Z. C. WangW. T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[44]

Z. C. WangW. T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[45]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, vol. 119, Springer, NewYork, 1986. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[46]

J. Wu and X. Zou, Traveling wave fronts of reaction diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[47]

X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321.  doi: 10.1016/S0377-0427(02)00363-1.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (202)
  • HTML views (112)
  • Cited by (0)

Other articles
by authors

[Back to Top]