The present research work recalls a control-theoretic approach to the synchronization of a first-order master/slave oscillators pair on $\mathbb{R}^3$ and extends such technique to the case of curved Riemannian manifolds. As theoretical results, this paper proves the asymptotic convergence of the feedback controller and studies the entity of the 'control effort'. As a case study, the complete equations for the controller of a slave oscillator on the unit hypersphere $\mathbb{S}^{n-1}$ are laid out and are illustrated by numerical examples for $n = 3$ and $n = 10$, even in the hypothesis of noisy master-system state measurement.
Citation: |
Figure 1.
Master/slave/controller configuration: The feedback-type control chain is designed to make the slave oscillator sync asymptotically with the master oscillator. The symbol
Figure 2.
Example of dynamics of the system (26) over the sphere
Figure 3.
Example of synchronization of oscillators over the sphere
Figure 5.
Example of synchronization of oscillators over the sphere
Figure 6.
Example of synchronization of oscillators over the sphere
Figure 7.
Example of synchronization of oscillators over the sphere
[1] | S. Al-Azzawi, L. Jicheng and L. Xianming, Convergence rate of synchronization of systems with additive noise, Discrete & Continuous Dynamical Systems - Series B, 22 (2017), 227-245. doi: 10.3934/dcdsb.2017012. |
[2] | A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002. |
[3] | S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The synchronization of chaotic systems, Physics Reports, 366 (2002), 1-101. doi: 10.1016/S0370-1573(02)00137-0. |
[4] | I. Chueshov, P. E. Kloeden and Y. Meihua, Synchronization in couples sine-Gordon wave model, Discrete & Continuous Dynamical Systems - Series B, 21 (2016), 2969-2990. doi: 10.3934/dcdsb.2016082. |
[5] | K. M. Cuomo, A. V. Oppenheim and S. H. Strogatz, Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE Transactions on Circuits and Systems - Part Ⅱ: Analog and Digital Signal Processing, 40 (1993), 626-633. doi: 10.1109/82.246163. |
[6] | F. Dörfler, M. Chertkov and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences, 110 (2013), 2005-2010. doi: 10.1073/pnas.1212134110. |
[7] | Z. Cai, M. S. de Queiroz and D. M. Dawson, Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance, IEEE Transactions on Automatic Control, 51 (2006), 524-529. doi: 10.1109/TAC.2005.864204. |
[8] | S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Fundamentals, Journal of Systems Science and Complexity, 29 (2016), 22-40. doi: 10.1007/s11424-015-4063-7. |
[9] | S. Fiori, Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation, Communications in Nonlinear Science and Numerical Simulation, 47 (2017), 207-222. doi: 10.1016/j.cnsns.2016.11.025. |
[10] | J. M. González Miranda, Synchronization and Control of Chaos, Imperial College Press, London, 2004. |
[11] | S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume Ⅰ, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. |
[12] | J. M. Lee, Riemannian Manifolds, Vol. 176 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1997. doi: 10.1007/b98852. |
[13] | T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott and R. Roy, Complex dynamics and synchronization of delayed-feedback nonlinear oscillators, Philosophical Transactions of the Royal Society A, 368 (2010), 343-366. doi: 10.1098/rsta.2009.0225. |
[14] | J. H. Park, Chaos synchronization of a chaotic system via nonlinear control, Chaos, Solitons and Fractals, 27 (2006), 1369-1375. doi: 10.1016/j.chaos.2005.05.001. |
[15] | L. M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, (1996), 142-145. doi: 10.1016/B978-012396840-1/50040-0. |
[16] | X. Pennec, Barycentric subspaces and affine spans in manifolds, Geometric Science of Information, Lecture Notes in Comput. Sci., Springer, Cham, 9389 (2015), 12-21. doi: 10.1007/978-3-319-25040-3_2. |
[17] | A. Sarlette and R. Sepulchre, Consensus optimization on manifolds, SIAM Journal on Control and Optimization, 48 (2009), 56-76. doi: 10.1137/060673400. |
[18] | J.-P. Yeh and K.-L. Wu, A simple method to synchronize chaotic systems and its application to secure communications, Mathematical and Computer Modelling, 47 (2008), 894-902. doi: 10.1016/j.mcm.2007.06.021. |
[19] | C. W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, 2007. doi: 10.1142/6570. |
[20] | X. Wu, C. Xu and J. Feng, Complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems and coupling time delays, Communications in Nonlinear Science and Numerical Simulation, 20 (2015), 1004-1014. doi: 10.1016/j.cnsns.2014.07.003. |