|
A. Arenas
, A. Díaz-Guilera
, J. Kurths
, Y. Moreno
and C. Zhou
, Synchronization in complex networks, Physics Reports, 469 (2008)
, 93-153.
doi: 10.1016/j.physrep.2008.09.002.
|
|
A. Argyris
, D. Syvridis
, L. Larger
, V. Annovazzi-Lodi
, P. Colet
, I. Fischer
, J. Garcia-Ojalvo
, C. R. Mirasso
, L. Pesquera
and K. A. Shore
, Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, 438 (2005)
, 343-346.
doi: 10.1038/nature04275.
|
|
L. W. Beineke and R. J. Wilson, Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2004.
doi: 10.1017/CBO9780511529993.
|
|
S. Boccaletti
, V. Latora
, Y. Moreno
, M. Chavez
and D. Hwang
, Complex networks: Structure and dynamics, Physics Reports, 424 (2006)
, 175-308.
doi: 10.1016/j.physrep.2005.10.009.
|
|
B. Bollobás, Random graphs, Combinatorics (Swansea, 1981), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge-New York, 52 (1981), 80-102.
|
|
A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext. Springer New York, 2011.
doi: 10.1007/978-1-4614-1939-6.
|
|
S. A. Campbell
, I. Ncube
and J. Wu
, Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Physica D: Nonlinear Phenomena, 214 (2006)
, 101-119.
doi: 10.1016/j.physd.2005.12.008.
|
|
P. Colet
and R. Roy
, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994)
, 2056-2058.
doi: 10.1364/OL.19.002056.
|
|
T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), 016202.
doi: 10.1103/PhysRevE.86.016202.
|
|
T. Erneux, Applied Delay Differential Equations, volume 3 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, 2009.
|
|
B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. -J. Wünsche and E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser, Phys. Rev. E, 77 (2008), 066207, 9pp.
doi: 10.1103/PhysRevE.77.066207.
|
|
M. Fiedler
, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, 23 (1973)
, 298-305.
|
|
V. Flunkert, S. Yanchuk, T. Dahms and E. Schöll, Synchronizing distant nodes: A universal classification of networks, Phys. Rev. Lett. , 105 (2010), 254101.
doi: 10.1103/PhysRevLett.105.254101.
|
|
S. Fortunato
, Community detection in graphs, Physics Reports, 486 (2010)
, 75-174.
doi: 10.1016/j.physrep.2009.11.002.
|
|
J. Foss
and J. Milton
, Multistability in recurrent neural loops arising from delay, J Neurophysiol, 84 (2000)
, 975-985.
doi: 10.1152/jn.2000.84.2.975.
|
|
E. Fridman
, Tutorial on lyapunov-based methods for time-delay systems, European Journal of Control, 20 (2014)
, 271-283.
doi: 10.1016/j.ejcon.2014.10.001.
|
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
|
J. D. Hart, J. P. Pade, T. Pereira, T. E. Murphy and R. Roy, Adding connections can hinder network synchronization of time-delayed oscillators, Phys. Rev. E, 92 (2015), 022804.
doi: 10.1103/PhysRevE.92.022804.
|
|
S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll and W. Kinzel, Strong and weak chaos in nonlinear networks with time-delayed couplings, Phys. Rev. Lett. , 107 (2011), 234102.
doi: 10.1103/PhysRevLett.107.234102.
|
|
E. M. Izhikevich
, Polychronization: Computation with spikes, Neural Computation, 18 (2006)
, 245-282.
doi: 10.1162/089976606775093882.
|
|
J. Javaloyes, P. Mandel and D. Pieroux, Dynamical properties of lasers coupled face to face, Phys. Rev. E, 67 (2003), 036201.
doi: 10.1103/PhysRevE.67.036201.
|
|
W. Kinzel, A. Englert, G. Reents, M. Zigzag, and I. Kanter, Synchronization of networks of chaotic units with time-delayed couplings, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 79 (2009), 056207.
doi: 10.1103/PhysRevE.79.056207.
|
|
M. Lichtner
, M. Wolfrum
and S. Yanchuk
, The spectrum of delay differential equations with large delay, SIAM J. Math. Anal., 43 (2011)
, 788-802.
doi: 10.1137/090766796.
|
|
L. Lücken, J. P. Pade, K. Knauer and S. Yanchuk, Reduction of interaction delays in networks, EPL (Europhysics Letters), 103 (2013), 10006.
|
|
D. N. M. Maia
, E. E. N. Macau
and T. Pereira
, Persistence of network synchronization under nonidentical coupling functions, SIAM J. Appl. Dyn. Syst., 15 (2016)
, 1563-1580.
doi: 10.1137/15M1049786.
|
|
T. F. Móri
, The maximum degree of the barabási-albert random tree, Comb. Probab. Comput., 14 (2005)
, 339-348.
doi: 10.1017/S0963548304006133.
|
|
M. E. J. Newman
, The structure and function of complex networks, SIAM Review, 45 (2003)
, 167-256.
doi: 10.1137/S003614450342480.
|
|
G. Orosz
, R. E. Wilson
and G. Stepan
, Traffic jams: dynamics and control, Phil. Trans. R. Soc. A, 368 (2010)
, 4455-4479.
doi: 10.1098/rsta.2010.0205.
|
|
T. Pereira
, J. Eldering
, M. Rasmussen
and A. Veneziani
, Towards a theory for diffusive coupling functions allowing persistent synchronization, Nonlinearity, 27 (2014)
, 501-525.
doi: 10.1088/0951-7715/27/3/501.
|
|
B. Ravoori, A. B. Cohen, J. Sun, A. E. Motter, T. E. Murphy and R. Roy, Robustness of optimal synchronization in real networks, Phys. Rev. Lett. , 107 (2011), 034102.
doi: 10.1103/PhysRevLett.107.034102.
|
|
O. Riordan
and A. Selby
, The maximum degree of a random graph, Comb. Probab. Comput., 9 (2000)
, 549-572.
doi: 10.1017/S0963548300004491.
|
|
F. A. Rodrigues
, T. K. DM. Peron
, P. Ji
and J. Kurths
, The kuramoto model in complex networks, Physics Reports, 610 (2016)
, 1-98.
doi: 10.1016/j.physrep.2015.10.008.
|
|
J. Schlesner, A. Amann, N. B. Janson, W. Just and E. Schöll, Self-stabilization of high-frequency oscillations in semiconductor superlattices by time-delay autosynchronization, Phys. Rev. E, 68 (2003), 066208.
doi: 10.1103/PhysRevE.68.066208.
|
|
J. Sieber
, M. Wolfrum
, M. Lichtner
and S. Yanchuk
, On the stability of periodic orbits in delay equations with large delay, Discrete Contin. Dyn. Syst. A, 33 (2013)
, 3109-3134.
doi: 10.3934/dcds.2013.33.3109.
|
|
W. Singer
, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 55 (1993)
, 349-374.
doi: 10.1146/annurev.ph.55.030193.002025.
|
|
H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, volume 57. Texts in Applied Mathematics, 57. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8.
|
|
M. C. Soriano
, J. Garcia-Ojalvo
, C. R. Mirasso
and I. Fischer
, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers, Rev. Mod. Phys., 85 (2013)
, 421-470.
doi: 10.1103/RevModPhys.85.421.
|
|
E. Steur
, W. Michiels
, H. Huijberts
and H. Nijmeijer
, Networks of diffusively time-delay coupled systems: Conditions for synchronization and its relation to the network topology, Physica D, 277 (2014)
, 22-39.
doi: 10.1016/j.physd.2014.03.004.
|
|
M. Wolfrum
, S. Yanchuk
, P. Hövel
and E. Schöll
, Complex dynamics in delay-differential equations with large delay, Eur. Phys. J. Special Topics, 191 (2010)
, 91-103.
doi: 10.1140/epjst/e2010-01343-7.
|
|
J. Wu
, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350 (1998)
, 4799-4838.
doi: 10.1090/S0002-9947-98-02083-2.
|
|
S. Yanchuk and G. Giacomelli, Spatio-temporal phenomena in complex systems with time delays, Journal of Physics A: Mathematical and Theoretical, 50 (2017), 103001, 56pp.
|
|
S. Yanchuk and P. Perlikowski, Delay and periodicity, Phys. Rev. E, 79 (2009), 046221, 9pp.
doi: 10.1103/PhysRevE.79.046221.
|
|
S. Yanchuk and M. Wolfrum, Instabilities of equilibria of delay-differential equations with large delay, In D. H. van Campen, M. D. Lazurko, and W. P. J. M. van der Oever, editors, Proceedings of ENOC-2005, pages 1060-1065, Eindhoven, Netherlands, August 2005.
|