April  2019, 24(4): 1843-1865. doi: 10.3934/dcdsb.2018240

Spreading-vanishing dichotomy in information diffusion in online social networks with intervention

1. 

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

2. 

School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA

* Corresponding author: Jingli Ren

Received  November 2017 Revised  April 2018 Published  April 2019 Early access  August 2018

In this paper, multiple information diffusion in online social networks with free boundary condition is investigated. We prove a spreading-vanishing dichotomy for the problem: i.e., either at least one piece of information lasts forever or all information suspend in finite time. The criterion for spreading and vanishing is established, it is related to the initial spreading area and the expansion capacity. We also obtain several cases of the asymptotic behavior of the information under different conditions. When the information spreads, we provide some upper and lower bounds of the spreading speed corresponding to different cases of asymptotic behavior of the information. In addition, numerical examples are given to illustrate the impacts of the initial spreading area and the expansion capacity on the free boundary, and all cases of the asymptotic behavior of the information.

Citation: Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240
References:
[1]

I. AhnS. Baek and Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40 (2016), 7082-7101.  doi: 10.1016/j.apm.2016.02.038.

[2]

F. BenvenutoT. RodriguesM. Cha and V. Almeida, Characterizing user behavior in online social networks, in 9th ACM SIGCOMM Internet Measurement Conference, (2009), 49-62.  doi: 10.1145/1644893.1644900.

[3]

G. BuntingY. H. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.

[4]

R. S. Cantrell and C. Consner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons Ltd., Chichester, 2003. doi: 10.1002/0470871296.

[5]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.  doi: 10.1137/S0036141099351693.

[6]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.

[7]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.

[8]

Y. H. Du and L. Ma, Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. Lond. Math. Soc., 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.

[9]

R. Ghosh and K. Lerman, A framework for quantitative analysis of cascades on networks, WSDM '11 Proceedings of the fourth ACM international conference on Web search and data mining, (2011), 665-674.  doi: 10.1145/1935826.1935917.

[10]

J. S. Guo and C. H. Wu, On a free boundary for a two-species weak competition system, J. Dynam. Diff. Equat., 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.

[11]

J. JiangC. WilsonX. WangP. HuangW. P. ShaY. F. Dai and B. Y. Zhao, Understanding latent interactions in online social networks, in Proceedings of ACM SIGCOMM International Measurement Conference, (2010), 369-382.  doi: 10.1145/1879141.1879190.

[12]

A. KolmogorovI. Petrovski and N. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Bull. Moscow Univ. Math. Mech., 1 (1937), 1-25. 

[13]

K. Lerman and R. Ghosh, Information contagion: An empirical study of spread of news on digg and twitter social networks, in Proceedings of International Conference on Weblogs and Social Media (ICWSM), 2010.

[14]

C. X. LeiZ. G. Lin and H. Y. Wang, The free bondary problem describing information diffusion in online social networks, J. Differential Equations, 254 (2013), 1326-1341.  doi: 10.1016/j.jde.2012.10.021.

[15]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.  doi: 10.1016/j.jde.2014.03.015.

[16]

G. LinW. T. Li and M. J. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414.  doi: 10.3934/dcdsb.2010.13.393.

[17]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.  doi: 10.1007/s00285-017-1124-7.

[18]

J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.  doi: 10.1007/BF00280665.

[19]

C. PengK. XuF. Wang and H. Y. Wang, Predicting information diffusion initiated from multiple sources in online social networks, in 6th International Symposium on Computational Intelligence and Design(ISCID), (2013), 96-99.  doi: 10.1109/ISCID.2013.138.

[20]

S. Razvan and D. Gabriel, Numerical approximation of a free boundary problem for a predator-prey model, Numer. Anal. Appl., 5434 (2009), 548-555. 

[21]

J. L. Ren and L. P. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332-016-9323-8.

[22]

L. I. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971.

[23]

G. V. Steeg, R. Ghosh and K. Lerman, What stops social epidemics? in ICWSM '11: Proceedings of the 5th Int. Conf. on Weblogs and Social Media, 2011.

[24]

F. Wang, H. Y. Wang and K. Xu, Diffusive logistic model towards predicting information diffusion in online social networks, in 32nd International Conference on Distributed Computing Systems Workshops (ICDCS), (2012), 133-139. doi: 10.1109/ICDCSW.2012.16.

[25]

F. Wang, H. Y. Wang and K. Xu, Characterizing information diffusion in online social networks with linear diffusive model, in 33rd IEEE International Conference on Distributed Computing Systems (ICDCS), (2013), 307-316. doi: 10.1109/ICDCS.2013.14.

[26]

M. X. Wang and J. F. Zhao, Free boundary problems for the Lotka-Volterra competition system, J. Dyn. Diff. Equat., 26 (2014), 655-672.  doi: 10.1007/s10884-014-9363-4.

[27]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.

[28]

M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, J. Dyn. Diff. Equat., 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.

[29]

Y. Xu, D. D. Zhu and J. L. Ren, On a reaction-diffusion-advection system: Fixed boundary vs free boundary, Electron. J. Qual. Theod., (2018), in press.

[30]

J. Yang and J. Leskovec, Modeling information diffusion in implicit networks, in Proceedings of IEEE International Conference on Data Mining, 2010. doi: 10.1109/ICDM.2010.22.

[31]

S. Z. Ye and S. F. Wu, Measuring message propagation and social influence on Twitter.com, International Conference on Social Informatics, (2010), 216-231.  doi: 10.1007/978-3-642-16567-2_16.

[32]

D. D. Zhu, J. L. Ren and H. P. Zhu, Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model, Math. Meth. Appl. Sci., (2018), in press. doi: 10.1002/mma.5085.

[33]

L. H. ZhuH. Y. Zhao and H. Y. Wang, Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Inform. Sci., 349/350 (2016), 119-136.  doi: 10.1016/j.ins.2016.02.031.

show all references

References:
[1]

I. AhnS. Baek and Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40 (2016), 7082-7101.  doi: 10.1016/j.apm.2016.02.038.

[2]

F. BenvenutoT. RodriguesM. Cha and V. Almeida, Characterizing user behavior in online social networks, in 9th ACM SIGCOMM Internet Measurement Conference, (2009), 49-62.  doi: 10.1145/1644893.1644900.

[3]

G. BuntingY. H. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.

[4]

R. S. Cantrell and C. Consner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons Ltd., Chichester, 2003. doi: 10.1002/0470871296.

[5]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.  doi: 10.1137/S0036141099351693.

[6]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.

[7]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.

[8]

Y. H. Du and L. Ma, Logistic type equations on $\mathbb{R}^{N}$ by a squeezing method involving boundary blow-up solutions, J. Lond. Math. Soc., 64 (2001), 107-124.  doi: 10.1017/S0024610701002289.

[9]

R. Ghosh and K. Lerman, A framework for quantitative analysis of cascades on networks, WSDM '11 Proceedings of the fourth ACM international conference on Web search and data mining, (2011), 665-674.  doi: 10.1145/1935826.1935917.

[10]

J. S. Guo and C. H. Wu, On a free boundary for a two-species weak competition system, J. Dynam. Diff. Equat., 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.

[11]

J. JiangC. WilsonX. WangP. HuangW. P. ShaY. F. Dai and B. Y. Zhao, Understanding latent interactions in online social networks, in Proceedings of ACM SIGCOMM International Measurement Conference, (2010), 369-382.  doi: 10.1145/1879141.1879190.

[12]

A. KolmogorovI. Petrovski and N. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Bull. Moscow Univ. Math. Mech., 1 (1937), 1-25. 

[13]

K. Lerman and R. Ghosh, Information contagion: An empirical study of spread of news on digg and twitter social networks, in Proceedings of International Conference on Weblogs and Social Media (ICWSM), 2010.

[14]

C. X. LeiZ. G. Lin and H. Y. Wang, The free bondary problem describing information diffusion in online social networks, J. Differential Equations, 254 (2013), 1326-1341.  doi: 10.1016/j.jde.2012.10.021.

[15]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.  doi: 10.1016/j.jde.2014.03.015.

[16]

G. LinW. T. Li and M. J. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414.  doi: 10.3934/dcdsb.2010.13.393.

[17]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409.  doi: 10.1007/s00285-017-1124-7.

[18]

J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction diffusion equations, J. Math. Biol., 18 (1983), 169-184.  doi: 10.1007/BF00280665.

[19]

C. PengK. XuF. Wang and H. Y. Wang, Predicting information diffusion initiated from multiple sources in online social networks, in 6th International Symposium on Computational Intelligence and Design(ISCID), (2013), 96-99.  doi: 10.1109/ISCID.2013.138.

[20]

S. Razvan and D. Gabriel, Numerical approximation of a free boundary problem for a predator-prey model, Numer. Anal. Appl., 5434 (2009), 548-555. 

[21]

J. L. Ren and L. P. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, J. Nonlinear Sci., 26 (2016), 1895-1931.  doi: 10.1007/s00332-016-9323-8.

[22]

L. I. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971.

[23]

G. V. Steeg, R. Ghosh and K. Lerman, What stops social epidemics? in ICWSM '11: Proceedings of the 5th Int. Conf. on Weblogs and Social Media, 2011.

[24]

F. Wang, H. Y. Wang and K. Xu, Diffusive logistic model towards predicting information diffusion in online social networks, in 32nd International Conference on Distributed Computing Systems Workshops (ICDCS), (2012), 133-139. doi: 10.1109/ICDCSW.2012.16.

[25]

F. Wang, H. Y. Wang and K. Xu, Characterizing information diffusion in online social networks with linear diffusive model, in 33rd IEEE International Conference on Distributed Computing Systems (ICDCS), (2013), 307-316. doi: 10.1109/ICDCS.2013.14.

[26]

M. X. Wang and J. F. Zhao, Free boundary problems for the Lotka-Volterra competition system, J. Dyn. Diff. Equat., 26 (2014), 655-672.  doi: 10.1007/s10884-014-9363-4.

[27]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.

[28]

M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, J. Dyn. Diff. Equat., 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.

[29]

Y. Xu, D. D. Zhu and J. L. Ren, On a reaction-diffusion-advection system: Fixed boundary vs free boundary, Electron. J. Qual. Theod., (2018), in press.

[30]

J. Yang and J. Leskovec, Modeling information diffusion in implicit networks, in Proceedings of IEEE International Conference on Data Mining, 2010. doi: 10.1109/ICDM.2010.22.

[31]

S. Z. Ye and S. F. Wu, Measuring message propagation and social influence on Twitter.com, International Conference on Social Informatics, (2010), 216-231.  doi: 10.1007/978-3-642-16567-2_16.

[32]

D. D. Zhu, J. L. Ren and H. P. Zhu, Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model, Math. Meth. Appl. Sci., (2018), in press. doi: 10.1002/mma.5085.

[33]

L. H. ZhuH. Y. Zhao and H. Y. Wang, Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms, Inform. Sci., 349/350 (2016), 119-136.  doi: 10.1016/j.ins.2016.02.031.

Figure 1.  The relationship among three information
Figure 2.  $u, v$ and $w$ all vanish
Figure 3.  $u, v$ and $w$ all spread
Figure 4.  $u, v$ and $w$ all spread
Figure 5.  $u, v$ and $w$ all spread
Figure 6.  $u$ and $v$ vanish, $w$ spreads
Figure 7.  $u$ vanishes, $v$ and $w$ spread
Figure 8.  $v$ vanishes, $u$ and $w$ spread
Figure 9.  $u, v$ and $w$ all spread
Figure 10.  The density of influenced users of information A varies with the increase of the intervention rate $c_{1}$ for (A) and with the increase of the competition rate $b_{1}$ for (B)
[1]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[2]

Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121

[3]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[4]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[5]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[6]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[7]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[8]

Meng Zhao. The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks. Electronic Research Archive, 2020, 28 (3) : 1143-1160. doi: 10.3934/era.2020063

[9]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210

[10]

Jinxian Li, Ning Ren, Zhen Jin. An SICR rumor spreading model in heterogeneous networks. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1497-1515. doi: 10.3934/dcdsb.2019237

[11]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[12]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[13]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[14]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[15]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[16]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[17]

Kamruzzaman Khan, Timothy M. Schaerf, Yihong Du. Effects of environmental heterogeneity on species spreading via numerical analysis of some free boundary models. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022077

[18]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[19]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[20]

Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (392)
  • HTML views (444)
  • Cited by (4)

Other articles
by authors

[Back to Top]