
-
Previous Article
Evolutionarily stable dispersal strategies in a two-patch advective environment
- DCDS-B Home
- This Issue
-
Next Article
Spreading-vanishing dichotomy in information diffusion in online social networks with intervention
Periodic attractors of nonautonomous flat-topped tent systems
ISEL - Instituto Superior de Engenharia de Lisboa, Mathematics Department and CIMA - Research Centre for Mathematics and Applications, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal |
In this work we will consider a family of nonautonomous dynamical systems $x_{k+1} = f_k(x_k,\lambda)$, $\lambda \in [-1,1]^{\mathbb{N}_0}$, generated by a one-parameter family of flat-topped tent maps $g_{\alpha}(x)$, i.e., $f_k(x,\lambda) = g_{\lambda_k}(x)$ for all $k\in \mathbb{N}_0$. We will reinterpret the concept of attractive periodic orbit in this context, through the existence of some periodic, invariant and attractive nonautonomous sets and establish sufficient conditions over the parameter sequences for the existence of such periodic attractors.
References:
[1] |
N. Franco, L. Silva and P. Simões,
Symbolic dynamics and renormalization of nonautonomous $k$ periodic dynamical systems, Journal of Difference Equations and Applications, 19 (2013), 27-38.
doi: 10.1080/10236198.2011.611804. |
[2] |
J. Franke and A. Yakubu,
Population models with periodic recruitment functions and survival rates, Journal of Difference Equations and Applications, 11 (2005), 1169-1184.
doi: 10.1080/10236190500386275. |
[3] |
L. Glass and W. Zeng,
Bifurcations in flat-topped maps and the control of cardiac chaos, International Journal of Bifurcation and Chaos, 4 (1994), 1061-1067.
doi: 10.1142/S0218127494000770. |
[4] |
J. Milnor and C. Tresser,
On entropy and monotonicity for real cubic maps, Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[5] |
C. Pötzsche, Bifurcations in nonautonomous dynamical systems: Results and tools in discrete
time, in Proceedings of the International Workshop Future Directions in Difference Equations
(eds. E. Liz and V. Mañosa), Universidade de Vigo, Vigo, 69 (2011), 163-212. |
[6] |
L. Silva, J. L. Rocha and M. T. Silva, Bifurcations of 2-periodic nonautonomous stunted tent systems, Int. J. Bifurcation Chaos, 27 (2017), 1730020 [17 pages].
doi: 10.1142/S0218127417300208. |
[7] |
A. Rădulescu,
The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.
doi: 10.3934/dcds.2007.19.139. |
[8] |
C. Wagner and R. Stoop,
Renormalization approach to optimal limiter control in 1-D chaotic systems, Journal of Statistical Physics, 106 (2002), 97-106.
doi: 10.1023/A:1013120112236. |
show all references
References:
[1] |
N. Franco, L. Silva and P. Simões,
Symbolic dynamics and renormalization of nonautonomous $k$ periodic dynamical systems, Journal of Difference Equations and Applications, 19 (2013), 27-38.
doi: 10.1080/10236198.2011.611804. |
[2] |
J. Franke and A. Yakubu,
Population models with periodic recruitment functions and survival rates, Journal of Difference Equations and Applications, 11 (2005), 1169-1184.
doi: 10.1080/10236190500386275. |
[3] |
L. Glass and W. Zeng,
Bifurcations in flat-topped maps and the control of cardiac chaos, International Journal of Bifurcation and Chaos, 4 (1994), 1061-1067.
doi: 10.1142/S0218127494000770. |
[4] |
J. Milnor and C. Tresser,
On entropy and monotonicity for real cubic maps, Comm. Math. Phys., 209 (2000), 123-178.
doi: 10.1007/s002200050018. |
[5] |
C. Pötzsche, Bifurcations in nonautonomous dynamical systems: Results and tools in discrete
time, in Proceedings of the International Workshop Future Directions in Difference Equations
(eds. E. Liz and V. Mañosa), Universidade de Vigo, Vigo, 69 (2011), 163-212. |
[6] |
L. Silva, J. L. Rocha and M. T. Silva, Bifurcations of 2-periodic nonautonomous stunted tent systems, Int. J. Bifurcation Chaos, 27 (2017), 1730020 [17 pages].
doi: 10.1142/S0218127417300208. |
[7] |
A. Rădulescu,
The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.
doi: 10.3934/dcds.2007.19.139. |
[8] |
C. Wagner and R. Stoop,
Renormalization approach to optimal limiter control in 1-D chaotic systems, Journal of Statistical Physics, 106 (2002), 97-106.
doi: 10.1023/A:1013120112236. |


[1] |
Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587 |
[2] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215 |
[3] |
Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727 |
[4] |
David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96 |
[5] |
George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43 |
[6] |
Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190 |
[7] |
David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287 |
[8] |
Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473 |
[9] |
Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065 |
[10] |
Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705 |
[11] |
H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549 |
[12] |
Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585 |
[13] |
Everaldo de Mello Bonotto, Matheus Cheque Bortolan, Rodolfo Collegari, José Manuel Uzal. Impulses in driving semigroups of nonautonomous dynamical systems: Application to cascade systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4645-4661. doi: 10.3934/dcdsb.2020306 |
[14] |
Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435 |
[15] |
João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465 |
[16] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[17] |
Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43 |
[18] |
Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 |
[19] |
P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213 |
[20] |
Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]