• Previous Article
    On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator
  • DCDS-B Home
  • This Issue
  • Next Article
    Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise
October  2018, 23(8): 3347-3360. doi: 10.3934/dcdsb.2018248

Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach

Department of Mathematics, Anhui Normal University, Wuhu 241000, China

* Corresponding author: Yong Ren

Received  January 2018 Published  August 2018

Fund Project: The first author is supported by the National Natural Science Foundation of China grant 11371029 and 11501009.

In this article, we discuss a class of impulsive stochastic function differential equations driven by $G $-Brownian motion with delayed impulsive effects ($G $-DISFDEs, in short). Some sufficient conditions for $p$-th moment exponential stability of $G $-DISFDEs are derived by means of $G $-Lyapunov function method, average impulsive interval approach and Razumikhin-type conditions. An example is provided to show the effectiveness of the theoretical results.

Citation: Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248
References:
[1]

P. ChengF. Deng and F. Yao, Exponential stability analysis of impulsive stochastic functional differential systems with delayed impules, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2104-2114.  doi: 10.1016/j.cnsns.2013.10.008.  Google Scholar

[2]

L. DenisM. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.  doi: 10.1007/s11118-010-9185-x.  Google Scholar

[3]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.  doi: 10.1016/j.spa.2009.05.010.  Google Scholar

[4]

F. HuZ. Chen and P. Wu, A general strong law of large numbers for non-additive probabilities and its applications, Statistics, 50 (2016), 733-749.  doi: 10.1080/02331888.2016.1143473.  Google Scholar

[5]

F. HuZ. Chen and D. Zhang, How big are the increments of $G$-Brownian motion?, Sci. China Math., 57 (2014), 1687-1700.  doi: 10.1007/s11425-014-4816-0.  Google Scholar

[6]

F. Hu and Z. Chen, General laws of large numbers under sublinear expectations, Comm. Statist. Theory Methods, 45 (2016), 4215-4229.  doi: 10.1080/03610926.2014.917677.  Google Scholar

[7]

L. Hu and Y. Ren, Implusive stochastic differential equations driven by G-Brownian motion, In Brownian Motion: Elements, Dynamics and Applications, editors: Mark A. McKibben and Micah Webster, Nova Science Publishers, Inc, New York, 2015, Capter 13,231–242. Google Scholar

[8]

M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539-546.  doi: 10.1007/s10255-008-8831-1.  Google Scholar

[9]

D. LiP. Cheng and S. Shu, Exponential stability of hybrid stochastic functional differential systems with delayed impulsive effects: average impulsive interval approach, Math. Methods Appl. Sci., 40 (2017), 4197-4210.  doi: 10.1002/mma.4297.  Google Scholar

[10]

X. Li and S. Peng, Stopping times and related Itô's calculus with $G$-Brownian motion, Stochastic Process. Appl., 121 (2011), 1492-1508.  doi: 10.1016/j.spa.2011.03.009.  Google Scholar

[11]

X. LiX. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by $G$-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235-255.  doi: 10.1016/j.jmaa.2016.02.042.  Google Scholar

[12]

S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic Analysis and Applications, in: Abel Symp., Springer, Berlin, 2 (2007), 541–567. doi: 10.1007/978-3-540-70847-6_25.  Google Scholar

[13]

S. Peng, G-Brownian motion and dynamic risk measures under volatility uncertainty, preprint, arXiv: 0711.2834v1. Google Scholar

[14]

S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.  doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[15]

S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and $G$-Brownian motion, preprint, arXiv: 1002.4546v1. Google Scholar

[16]

S. Peng, Theory, methods and meaning of nonlinear expectation theory (in Chinese), Sci Sin Math., 47 (2017), 1223-1254.   Google Scholar

[17]

Y. RenQ. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion, Math. Method. Appl. Sci., 36 (2013), 1746-1759.  doi: 10.1002/mma.2720.  Google Scholar

[18]

Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion, Statist. Probab. Lett., 81 (2011), 580-585.  doi: 10.1016/j.spl.2011.01.010.  Google Scholar

[19]

Y. RenX. Jia and L. Hu, Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion, iscrete Conti. Dyn. Syst. Ser-B., 20 (2015), 2157-2169.  doi: 10.3934/dcdsb.2015.20.2157.  Google Scholar

[20]

Y. RenX. Jia and R. Sakthivel, The $p$-th moment stability of solution to impulsive stochastic differential equations driven by $G$-Brownian motion, Appl. Anal., 96 (2017), 988-1003.  doi: 10.1080/00036811.2016.1169529.  Google Scholar

[21]

Y. RenJ. Wang and L. Hu, Multi-valued stochastic differential equations driven by $G$-Brownian motion and related stochastic control problems, Internat. J. Control, 90 (2017), 1132-1154.  doi: 10.1080/00207179.2016.1204560.  Google Scholar

[22]

F. YaoJ. CaoL. Qiu and P. Cheng, Exponential stability analysis for stochastic delayed differential systems with impulsive effects: average impulsive interval approach, Asian J. Control, 19 (2017), 74-86.  doi: 10.1002/asjc.1320.  Google Scholar

[23]

W. Yin and Y. Ren, Asymptotical boundedness and stability for stochastic differential equations with delay driven by $G$-Brownian motion, Appl. Math. Lett., 74 (2017), 121-126.  doi: 10.1016/j.aml.2017.06.001.  Google Scholar

[24]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906-1910.  doi: 10.1016/j.aml.2012.02.063.  Google Scholar

[25]

D. Zhang and P. He, Functional solution about stochastic differential equations driven by $G$-Brownian motion, Discrete Conti. Dyn. Syst. Ser-B., 20 (2015), 281-293.  doi: 10.3934/dcdsb.2015.20.281.  Google Scholar

show all references

References:
[1]

P. ChengF. Deng and F. Yao, Exponential stability analysis of impulsive stochastic functional differential systems with delayed impules, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2104-2114.  doi: 10.1016/j.cnsns.2013.10.008.  Google Scholar

[2]

L. DenisM. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.  doi: 10.1007/s11118-010-9185-x.  Google Scholar

[3]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.  doi: 10.1016/j.spa.2009.05.010.  Google Scholar

[4]

F. HuZ. Chen and P. Wu, A general strong law of large numbers for non-additive probabilities and its applications, Statistics, 50 (2016), 733-749.  doi: 10.1080/02331888.2016.1143473.  Google Scholar

[5]

F. HuZ. Chen and D. Zhang, How big are the increments of $G$-Brownian motion?, Sci. China Math., 57 (2014), 1687-1700.  doi: 10.1007/s11425-014-4816-0.  Google Scholar

[6]

F. Hu and Z. Chen, General laws of large numbers under sublinear expectations, Comm. Statist. Theory Methods, 45 (2016), 4215-4229.  doi: 10.1080/03610926.2014.917677.  Google Scholar

[7]

L. Hu and Y. Ren, Implusive stochastic differential equations driven by G-Brownian motion, In Brownian Motion: Elements, Dynamics and Applications, editors: Mark A. McKibben and Micah Webster, Nova Science Publishers, Inc, New York, 2015, Capter 13,231–242. Google Scholar

[8]

M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539-546.  doi: 10.1007/s10255-008-8831-1.  Google Scholar

[9]

D. LiP. Cheng and S. Shu, Exponential stability of hybrid stochastic functional differential systems with delayed impulsive effects: average impulsive interval approach, Math. Methods Appl. Sci., 40 (2017), 4197-4210.  doi: 10.1002/mma.4297.  Google Scholar

[10]

X. Li and S. Peng, Stopping times and related Itô's calculus with $G$-Brownian motion, Stochastic Process. Appl., 121 (2011), 1492-1508.  doi: 10.1016/j.spa.2011.03.009.  Google Scholar

[11]

X. LiX. Lin and Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by $G$-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235-255.  doi: 10.1016/j.jmaa.2016.02.042.  Google Scholar

[12]

S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Stochastic Analysis and Applications, in: Abel Symp., Springer, Berlin, 2 (2007), 541–567. doi: 10.1007/978-3-540-70847-6_25.  Google Scholar

[13]

S. Peng, G-Brownian motion and dynamic risk measures under volatility uncertainty, preprint, arXiv: 0711.2834v1. Google Scholar

[14]

S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.  doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[15]

S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and $G$-Brownian motion, preprint, arXiv: 1002.4546v1. Google Scholar

[16]

S. Peng, Theory, methods and meaning of nonlinear expectation theory (in Chinese), Sci Sin Math., 47 (2017), 1223-1254.   Google Scholar

[17]

Y. RenQ. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion, Math. Method. Appl. Sci., 36 (2013), 1746-1759.  doi: 10.1002/mma.2720.  Google Scholar

[18]

Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion, Statist. Probab. Lett., 81 (2011), 580-585.  doi: 10.1016/j.spl.2011.01.010.  Google Scholar

[19]

Y. RenX. Jia and L. Hu, Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion, iscrete Conti. Dyn. Syst. Ser-B., 20 (2015), 2157-2169.  doi: 10.3934/dcdsb.2015.20.2157.  Google Scholar

[20]

Y. RenX. Jia and R. Sakthivel, The $p$-th moment stability of solution to impulsive stochastic differential equations driven by $G$-Brownian motion, Appl. Anal., 96 (2017), 988-1003.  doi: 10.1080/00036811.2016.1169529.  Google Scholar

[21]

Y. RenJ. Wang and L. Hu, Multi-valued stochastic differential equations driven by $G$-Brownian motion and related stochastic control problems, Internat. J. Control, 90 (2017), 1132-1154.  doi: 10.1080/00207179.2016.1204560.  Google Scholar

[22]

F. YaoJ. CaoL. Qiu and P. Cheng, Exponential stability analysis for stochastic delayed differential systems with impulsive effects: average impulsive interval approach, Asian J. Control, 19 (2017), 74-86.  doi: 10.1002/asjc.1320.  Google Scholar

[23]

W. Yin and Y. Ren, Asymptotical boundedness and stability for stochastic differential equations with delay driven by $G$-Brownian motion, Appl. Math. Lett., 74 (2017), 121-126.  doi: 10.1016/j.aml.2017.06.001.  Google Scholar

[24]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906-1910.  doi: 10.1016/j.aml.2012.02.063.  Google Scholar

[25]

D. Zhang and P. He, Functional solution about stochastic differential equations driven by $G$-Brownian motion, Discrete Conti. Dyn. Syst. Ser-B., 20 (2015), 281-293.  doi: 10.3934/dcdsb.2015.20.281.  Google Scholar

[1]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (160)
  • HTML views (131)
  • Cited by (4)

Other articles
by authors

[Back to Top]