This work is devoted to investigate the existence and uniqueness of a global positive solution for a stochastic epidemic model with relapse and media coverage. We also study the dynamical properties of the solution around both disease-free and endemic equilibria points of the deterministic model. Furthermore, we show the existence of a stationary distribution. Numerical simulations are presented to confirm the theoretical results.
Citation: |
M. F. Abakar
, H. Y. Azami
, P. J. Bless
, L. Crump
, P. Lohmann
, M. Laager
, N. Chitnis
and J. Zinstag
, Transmission dynamics and elimination potential of zoonotic tuberculosis in Morocco, PLOS Neglected Tropical Diseases, 11 (2017)
, 1-17.
doi: 10.1371/journal.pntd.0005214.![]() ![]() |
|
B. Berrhazi
, M. El Fatini
, A. Laaribi
, R. Pettersson
and R. Taki
, A stochastic SIRS epidemic model incorporating media coverage and driven by Lévy noise, Chaos Solitons Fractals, 105 (2017)
, 60-68.
doi: 10.1016/j.chaos.2017.10.007.![]() ![]() ![]() |
|
B. Berrhazi, M. El Fatini, T. Caraballo and R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete and Continuous Dynamical Systems, Series B.
![]() |
|
S. Blower
, Modelling the genital herpes epidemic, Herpes, 11 (2004)
, Suppl 3,138A-146A.
![]() |
|
M. P. Brinn
, K. V. Carson
, A. J. Esterman
, A. B. Chang
and B. J. Smith
, Mass media interventions for preventing smoking in young people, Cochrane Data base Syst., 11 (2010)
, 1-47.
doi: 10.1002/14651858.CD001006.pub2.![]() ![]() |
|
B. Buonomo
, A. d'Onofrio
and D. Lacitignola
, Global stability of an SIR epidemic model with information dependent vaccination, Math. Biosci., 216 (2008)
, 9-16.
doi: 10.1016/j.mbs.2008.07.011.![]() ![]() ![]() |
|
Y. Cai
, Y. Kang
, M. Banerjee
and W. Wang
, A stochastic epidemic model incorporating media coverage, Communications in Mathematical Sciences, 14 (2016)
, 839-910.
doi: 10.4310/CMS.2016.v14.n4.a1.![]() ![]() ![]() |
|
J. Cui
, Y. Sun
and H. Zhu
, The impact of media on the control of infectious diseases, J. Dynam. Differential Equations, 20 (2008)
, 31-53.
doi: 10.1007/s10884-007-9075-0.![]() ![]() ![]() |
|
M. El Fatini
, A. Lahrouz
, R. Pettersson
, A. Settati
and R. Taki
, Stochastic stability and instability of an epidemic model with relapse, Appl. Math. Comput., 316 (2018)
, 326-341.
doi: 10.1016/j.amc.2017.08.037.![]() ![]() ![]() |
|
T. C. Gard, Introduction To Stochastic Differential Equations, Marcel Dekker INC, New York, 1988.
![]() ![]() |
|
P. Georgescu
and H. Zhang
, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput., 219 (2013)
, 8496-8507.
doi: 10.1016/j.amc.2013.02.044.![]() ![]() ![]() |
|
A. Gray
, D. Greenhalgh
, L. Hu
, X. Mao
and J. Pan
, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011)
, 876-902.
doi: 10.1137/10081856X.![]() ![]() ![]() |
|
C. Ji
and D. Jiang
, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38 (2014)
, 5067-5079.
doi: 10.1016/j.apm.2014.03.037.![]() ![]() ![]() |
|
R. Khasminskii, Stochastic Stability of Differential Equations, Springer 2012.
doi: 10.1007/978-3-642-23280-0.![]() ![]() ![]() |
|
P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer, 1994.
doi: 10.1007/978-3-642-57913-4.![]() ![]() ![]() |
|
A. Korobeinikov
and G. C. Wake
, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002)
, 955-960.
doi: 10.1016/S0893-9659(02)00069-1.![]() ![]() ![]() |
|
A. Korobeinikov
, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006)
, 615-626.
doi: 10.1007/s11538-005-9037-9.![]() ![]() ![]() |
|
A. Lahrouz
and A. Settati
, Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation, Appl. Math. Comp., 233 (2014)
, 10-19.
doi: 10.1016/j.amc.2014.01.158.![]() ![]() ![]() |
|
Q. Lei
and Z. Yang
, Dynamical behaviors of a stochastic SIRI epidemic model, Appl. Anal., 96 (2017)
, 2758-2770.
doi: 10.1080/00036811.2016.1240365.![]() ![]() ![]() |
|
Y. Li
and J. Cui
, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear Sci. Numer. Simul., 14 (2009)
, 2353-2365.
doi: 10.1016/j.cnsns.2008.06.024.![]() ![]() ![]() |
|
Y. Lin
, D. Jiang
and P. Xia
, Long-time behavior of a stochastic SIR model, Appl. Math. Comput., 236 (2014)
, 1-9.
doi: 10.1016/j.amc.2014.03.035.![]() ![]() ![]() |
|
Y. Lin
, D. Jiang
and S. Wang
, Stationary distribution of a stochastic SIS epidemic model with vaccination, Physica A, 394 (2014)
, 187-197.
doi: 10.1016/j.physa.2013.10.006.![]() ![]() ![]() |
|
S. Liu
, S. Wang
and L. Wang
, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Analysis: Real World Applications, 12 (2011)
, 119-127.
doi: 10.1016/j.nonrwa.2010.06.001.![]() ![]() ![]() |
|
Y. Liu
and J. Cui
, The impact of media coverage on the dynamics of infectious disease, International Journal of Biomathematics, 1 (2008)
, 65-74.
doi: 10.1142/S1793524508000023.![]() ![]() ![]() |
|
W. Liu
and Q. Zheng
, A stochastic SIS epidemic model incorporating media coverage in a two patch setting, Appl. Math. Comput., 262 (2015)
, 160-168.
doi: 10.1016/j.amc.2015.04.025.![]() ![]() ![]() |
|
X. Mao
, G. Marion
and E. Renshaw
, Environmental noise suppresses explosion in population dynamics, Stochastic Process. Appl., 97 (2002)
, 95-110.
doi: 10.1016/S0304-4149(01)00126-0.![]() ![]() ![]() |
|
X. Mao, Stochastic Differential Equations and Applications, 2nd Edition, Horwood, 2008.
doi: 10.1533/9780857099402.![]() ![]() ![]() |
|
H. N. Moreira
and Y. Wang
, Global stability in an SIRI model, SIAM Rev., 39 (1997)
, 496-502.
doi: 10.1137/S0036144595295879.![]() ![]() ![]() |
|
G. Strang, Linear Algebra and its Applications (Fourth Edition), Thomson Learning, Inc, 2006.
![]() |
|
C. Sun
, W. Yang
, J. Arino
and K. Khan
, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011)
, 87-95.
doi: 10.1016/j.mbs.2011.01.005.![]() ![]() ![]() |
|
J. Tchuenche
, N. Dube
, C. Bhunu
, R. Smith
and C. Bauch
, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health., 11 (2011)
, 1-14.
![]() |
|
D. Tudor
, A deterministic model for herpes infections in human and animal populations, SIAM Rev., 32 (1990)
, 136-139.
doi: 10.1137/1032003.![]() ![]() ![]() |
|
P. Van den Driessche
and X. Zou
, Modeling relapse in infectious diseases, Math. Biosci., 207 (2007)
, 89-103.
doi: 10.1016/j.mbs.2006.09.017.![]() ![]() ![]() |
|
P. Van den Driessche
, L. Wang
and X. Zou
, Modeling diseases with latency and relapse, Math. Biosci. Eng., 4 (2007)
, 205-219.
doi: 10.3934/mbe.2007.4.205.![]() ![]() ![]() |
|
C. Vargas-De-León
, On the global stability of infectious disease models with relapse, Abstraction and Application, 9 (2013)
, 50-61.
![]() |
|
L. Wang
and D. Jiang
, A note on the stationary distribution of the stochastic chemostat model with general response functions, App. Math. Lett., 73 (2017)
, 22-28.
doi: 10.1016/j.aml.2017.04.029.![]() ![]() ![]() |
|
P. Wildy, H. J. Field and A. A. Nash, Classical herpes latency revisited, in: B. W. J. Mahy, A. C. Minson, G. K. Darby (Eds.), Virus Persistence Symposium, Cambridge University Press, Cambridge, 33 (1982), 133-168.
![]() |
|
R. Xu
, Global dynamics of a delayed epidemic model with latency and relapse, Nonlinear Analysis: Modelling and Control., 18 (2013)
, 250-263.
![]() ![]() |
|
W. Zhang
and X. Meng
, Stochastic analysis of a novel nonautonomous periodic SIRI epidemic system with random disturbances, Physica A, 492 (2018)
, 1290-1301.
doi: 10.1016/j.physa.2017.11.057.![]() ![]() ![]() |
|
M. Zhao
and H. Zhao
, Asymptotic behavior of global positive solution to a stochastic SIR model incorporating media coverage, Advances in Difference Equations, 149 (2016)
, 1-17.
doi: 10.1186/s13662-016-0884-5.![]() ![]() ![]() |
|
C. Zhu
and G. Yin
, Asymptotic properties of hybrid diffusion systems, SIAM J. Control. Optim., 46 (2007)
, 1155-1179.
doi: 10.1137/060649343.![]() ![]() ![]() |
Trajectories of stochastic and deterministic systems with the parameters values given in Example 6.1.
Trajectories of stochastic and deterministic systems with the parameters values given in previous Example
The kernel density function estimations of
The kernel density function estimations of
Paths simulations of