August  2019, 24(8): 3453-3474. doi: 10.3934/dcdsb.2018251

Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

* Corresponding author: Wenqiang Zhao

Dedicated to Peter E. Kloeden on his 70th birthday

Received  March 2018 Published  August 2018

Fund Project: This work was supported by CTBU Grant 1751041, China NSF Grant 11601046.

In this article, we study the dynamical behaviour of solutions of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ with both multiplicative noises and non-autonomous forces, where the nonlinearity is a polynomial-like growth function of arbitrary order. An asymptotic smoothing effect of this system is demonstrated, namely, that the random pullback attractor in the initial space $L^2(\mathbb{R}^N)\times L^2(\mathbb{R}^N)$ is actually a compact, measurable and attracting set in $H^1(\mathbb{R}^N)\times L^2(\mathbb{R}^N)$. A difference estimates method, rather than the usual truncation estimate and spectrum decomposition technique, is employed to overcome the lack of Sobolev compact embedding in $H^1(\mathbb{R}^N)\times L^2(\mathbb{R}^N)$, despite of the loss of the high-order integrability of the difference of solutions for this system.

Citation: Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251
References:
[1]

A. Adili and B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dynam. Syst. Supplement, (2013), 1-10.  doi: 10.3934/proc.2013.2013.1.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dynam. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[3]

L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[4]

L. Arnold and B. Schmalfuss, Fixed Points and Attractors for Random Dynamical Systems, in IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, Solid Mechanics and its Applications (eds. A. Naess and S. Krenk), Springer, Dordrecht, 47 (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3.  Google Scholar

[5]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, vol. 184, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[8]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[10]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117 (2015), 173-206.  doi: 10.1365/s13291-015-0115-0.  Google Scholar

[11]

H. CunY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[12]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[13]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[14]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[15]

O. Goubet and R. M. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.  doi: 10.1006/jdeq.2001.4163.  Google Scholar

[16]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $R^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems, in Nonlinear Partial Differential Equations and their Applications (eds. H. Brezis and J. L. Lions), College de France Seminar, Vol. Ⅶ, Pitman, London, 122 (1985), 161-179.  Google Scholar

[18]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.  Google Scholar

[19]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[20]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Difference. Equ. Appl., 6 (2000), 33-52.  doi: 10.1080/10236190008808212.  Google Scholar

[21]

P. E. Kloeden and T. Lorenz, Pullback and forward attractors of nonautonomous difference equations, in Proceedings of ICDEAWuhan 2014 (eds. M. Bohner, Y. Ding and O. Dosly), Springer-Verlag, Heidelberg, 150 (2015), 37-48. doi: 10.1007/978-3-319-24747-2_3.  Google Scholar

[22]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[23]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference. Equ. Appl., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[24]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dynam. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[25]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[26]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[27]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transimission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.   Google Scholar

[28]

J. C. Robinson, Infinite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[29]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, (1992), 185-192. Google Scholar

[30]

B. Schmalfuß, Attractors for the nonautonomous dynamical systems, in International Conference on Differential Equations (eds. B. Fiedler, K. Gröger and J. Sprekels), World Sci. Publishing, Singapore, (2000), 684-690.  Google Scholar

[31]

B. Tang, Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[33]

M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Boston, 1988. doi: 10.1007/978-94-009-1423-0.  Google Scholar

[34]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave euqations with multiplicative noises, Discrete Contin. Dynam. Syst., 34 (2014), 269-330.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[36]

B. Wang, Random attractors for the FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 71 (2009), 2811-2828.  doi: 10.1016/j.na.2009.01.131.  Google Scholar

[37]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[38]

Y. WangY. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference Equ. Appl., 14 (2008), 799-817.  doi: 10.1080/10236190701859542.  Google Scholar

[39]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616.  doi: 10.11650/tjm.20.2016.6699.  Google Scholar

[40]

W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_ρ^p$, Appl. Math. Comput., 291 (2016), 226-243.  doi: 10.1016/j.amc.2016.06.045.  Google Scholar

[41]

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput., 239 (2014), 358-374.  doi: 10.1016/j.amc.2014.04.106.  Google Scholar

[42]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.  doi: 10.1016/j.camwa.2018.02.031.  Google Scholar

[43]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$with an unbounded additive noise, J. Math. Anal. App., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[44]

W. Zhao, Long-time random dynamics of stochastic parabolic $p$-Laplacian equations on $\mathbb{R}^N$, Nonliner Anal., 152 (2017), 196-219.  doi: 10.1016/j.na.2017.01.004.  Google Scholar

[45]

W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise, Discrete Contin. Dynam. Syst. Ser. B. doi: 10.3934/dcdsb.2018065.  Google Scholar

[46]

S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise, J. Math. Anal. Appl., 441 (2016), 648-667.  doi: 10.1016/j.jmaa.2016.04.038.  Google Scholar

[47]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105.  doi: 10.1016/j.camwa.2016.04.004.  Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dynam. Syst. Supplement, (2013), 1-10.  doi: 10.3934/proc.2013.2013.1.  Google Scholar

[2]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dynam. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[3]

L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[4]

L. Arnold and B. Schmalfuss, Fixed Points and Attractors for Random Dynamical Systems, in IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, Solid Mechanics and its Applications (eds. A. Naess and S. Krenk), Springer, Dordrecht, 47 (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3.  Google Scholar

[5]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, vol. 184, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[8]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[10]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117 (2015), 173-206.  doi: 10.1365/s13291-015-0115-0.  Google Scholar

[11]

H. CunY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[12]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[13]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[14]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[15]

O. Goubet and R. M. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.  doi: 10.1006/jdeq.2001.4163.  Google Scholar

[16]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $R^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems, in Nonlinear Partial Differential Equations and their Applications (eds. H. Brezis and J. L. Lions), College de France Seminar, Vol. Ⅶ, Pitman, London, 122 (1985), 161-179.  Google Scholar

[18]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233 (2007), 83-94.  doi: 10.1016/j.physd.2007.06.008.  Google Scholar

[19]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[20]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Difference. Equ. Appl., 6 (2000), 33-52.  doi: 10.1080/10236190008808212.  Google Scholar

[21]

P. E. Kloeden and T. Lorenz, Pullback and forward attractors of nonautonomous difference equations, in Proceedings of ICDEAWuhan 2014 (eds. M. Bohner, Y. Ding and O. Dosly), Springer-Verlag, Heidelberg, 150 (2015), 37-48. doi: 10.1007/978-3-319-24747-2_3.  Google Scholar

[22]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[23]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference. Equ. Appl., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[24]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dynam. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[25]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[26]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[27]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transimission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.   Google Scholar

[28]

J. C. Robinson, Infinite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[29]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, (1992), 185-192. Google Scholar

[30]

B. Schmalfuß, Attractors for the nonautonomous dynamical systems, in International Conference on Differential Equations (eds. B. Fiedler, K. Gröger and J. Sprekels), World Sci. Publishing, Singapore, (2000), 684-690.  Google Scholar

[31]

B. Tang, Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[33]

M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Boston, 1988. doi: 10.1007/978-94-009-1423-0.  Google Scholar

[34]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave euqations with multiplicative noises, Discrete Contin. Dynam. Syst., 34 (2014), 269-330.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[36]

B. Wang, Random attractors for the FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 71 (2009), 2811-2828.  doi: 10.1016/j.na.2009.01.131.  Google Scholar

[37]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[38]

Y. WangY. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference Equ. Appl., 14 (2008), 799-817.  doi: 10.1080/10236190701859542.  Google Scholar

[39]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616.  doi: 10.11650/tjm.20.2016.6699.  Google Scholar

[40]

W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_ρ^p$, Appl. Math. Comput., 291 (2016), 226-243.  doi: 10.1016/j.amc.2016.06.045.  Google Scholar

[41]

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput., 239 (2014), 358-374.  doi: 10.1016/j.amc.2014.04.106.  Google Scholar

[42]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.  doi: 10.1016/j.camwa.2018.02.031.  Google Scholar

[43]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$with an unbounded additive noise, J. Math. Anal. App., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[44]

W. Zhao, Long-time random dynamics of stochastic parabolic $p$-Laplacian equations on $\mathbb{R}^N$, Nonliner Anal., 152 (2017), 196-219.  doi: 10.1016/j.na.2017.01.004.  Google Scholar

[45]

W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise, Discrete Contin. Dynam. Syst. Ser. B. doi: 10.3934/dcdsb.2018065.  Google Scholar

[46]

S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise, J. Math. Anal. Appl., 441 (2016), 648-667.  doi: 10.1016/j.jmaa.2016.04.038.  Google Scholar

[47]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105.  doi: 10.1016/j.camwa.2016.04.004.  Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[16]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (257)
  • HTML views (840)
  • Cited by (0)

Other articles
by authors

[Back to Top]