August  2019, 24(8): 3453-3474. doi: 10.3934/dcdsb.2018251

Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

* Corresponding author: Wenqiang Zhao

Dedicated to Peter E. Kloeden on his 70th birthday

Received  March 2018 Published  August 2018

Fund Project: This work was supported by CTBU Grant 1751041, China NSF Grant 11601046

In this article, we study the dynamical behaviour of solutions of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ with both multiplicative noises and non-autonomous forces, where the nonlinearity is a polynomial-like growth function of arbitrary order. An asymptotic smoothing effect of this system is demonstrated, namely, that the random pullback attractor in the initial space $L^2(\mathbb{R}^N)\times L^2(\mathbb{R}^N)$ is actually a compact, measurable and attracting set in $H^1(\mathbb{R}^N)\times L^2(\mathbb{R}^N)$. A difference estimates method, rather than the usual truncation estimate and spectrum decomposition technique, is employed to overcome the lack of Sobolev compact embedding in $H^1(\mathbb{R}^N)\times L^2(\mathbb{R}^N)$, despite of the loss of the high-order integrability of the difference of solutions for this system.

Citation: Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251
References:
[1]

A. Adili and B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dynam. Syst. Supplement, (2013), 1-10. doi: 10.3934/proc.2013.2013.1. Google Scholar

[2]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dynam. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643. Google Scholar

[3]

L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[4]

L. Arnold and B. Schmalfuss, Fixed Points and Attractors for Random Dynamical Systems, in IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, Solid Mechanics and its Applications (eds. A. Naess and S. Krenk), Springer, Dordrecht, 47 (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3. Google Scholar

[5]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, vol. 184, Springer, 2013. doi: 10.1007/978-1-4614-4581-4. Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277. Google Scholar

[8]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar

[10]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117 (2015), 173-206. doi: 10.1365/s13291-015-0115-0. Google Scholar

[11]

H. CunY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. Google Scholar

[12]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466. doi: 10.1016/S0006-3495(61)86902-6. Google Scholar

[13]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. Google Scholar

[14]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53. doi: 10.1007/s00222-009-0224-4. Google Scholar

[15]

O. Goubet and R. M. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53. doi: 10.1006/jdeq.2001.4163. Google Scholar

[16]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $R^n$, J. Differential Equations, 264 (2018), 7094-7137. doi: 10.1016/j.jde.2018.02.011. Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems, in Nonlinear Partial Differential Equations and their Applications (eds. H. Brezis and J. L. Lions), College de France Seminar, Vol. Ⅶ, Pitman, London, 122 (1985), 161-179. Google Scholar

[18]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233 (2007), 83-94. doi: 10.1016/j.physd.2007.06.008. Google Scholar

[19]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753. Google Scholar

[20]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Difference. Equ. Appl., 6 (2000), 33-52. doi: 10.1080/10236190008808212. Google Scholar

[21]

P. E. Kloeden and T. Lorenz, Pullback and forward attractors of nonautonomous difference equations, in Proceedings of ICDEAWuhan 2014 (eds. M. Bohner, Y. Ding and O. Dosly), Springer-Verlag, Heidelberg, 150 (2015), 37-48. doi: 10.1007/978-3-319-24747-2_3. Google Scholar

[22]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268. doi: 10.1090/proc/12735. Google Scholar

[23]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference. Equ. Appl., 22 (2016), 513-525. doi: 10.1080/10236198.2015.1107550. Google Scholar

[24]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dynam. Syst. Ser. B, 21 (2016), 1203-1223. doi: 10.3934/dcdsb.2016.21.1203. Google Scholar

[25]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[26]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021. Google Scholar

[27]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transimission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070. Google Scholar

[28]

J. C. Robinson, Infinite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar

[29]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, (1992), 185-192.Google Scholar

[30]

B. Schmalfuß, Attractors for the nonautonomous dynamical systems, in International Conference on Differential Equations (eds. B. Fiedler, K. Gröger and J. Sprekels), World Sci. Publishing, Singapore, (2000), 684-690. Google Scholar

[31]

B. Tang, Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 35 (2015), 441-466. doi: 10.3934/dcds.2015.35.441. Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[33]

M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Boston, 1988. doi: 10.1007/978-94-009-1423-0. Google Scholar

[34]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815. doi: 10.1016/j.na.2008.07.011. Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave euqations with multiplicative noises, Discrete Contin. Dynam. Syst., 34 (2014), 269-330. doi: 10.3934/dcds.2014.34.269. Google Scholar

[36]

B. Wang, Random attractors for the FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 71 (2009), 2811-2828. doi: 10.1016/j.na.2009.01.131. Google Scholar

[37]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[38]

Y. WangY. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference Equ. Appl., 14 (2008), 799-817. doi: 10.1080/10236190701859542. Google Scholar

[39]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616. doi: 10.11650/tjm.20.2016.6699. Google Scholar

[40]

W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_ρ^p$, Appl. Math. Comput., 291 (2016), 226-243. doi: 10.1016/j.amc.2016.06.045. Google Scholar

[41]

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput., 239 (2014), 358-374. doi: 10.1016/j.amc.2014.04.106. Google Scholar

[42]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824. doi: 10.1016/j.camwa.2018.02.031. Google Scholar

[43]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$with an unbounded additive noise, J. Math. Anal. App., 455 (2017), 1178-1203. doi: 10.1016/j.jmaa.2017.06.025. Google Scholar

[44]

W. Zhao, Long-time random dynamics of stochastic parabolic $p$-Laplacian equations on $\mathbb{R}^N$, Nonliner Anal., 152 (2017), 196-219. doi: 10.1016/j.na.2017.01.004. Google Scholar

[45]

W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise, Discrete Contin. Dynam. Syst. Ser. B. doi: 10.3934/dcdsb.2018065. Google Scholar

[46]

S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise, J. Math. Anal. Appl., 441 (2016), 648-667. doi: 10.1016/j.jmaa.2016.04.038. Google Scholar

[47]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105. doi: 10.1016/j.camwa.2016.04.004. Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dynam. Syst. Supplement, (2013), 1-10. doi: 10.3934/proc.2013.2013.1. Google Scholar

[2]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dynam. Syst. Ser. B, 18 (2013), 643-666. doi: 10.3934/dcdsb.2013.18.643. Google Scholar

[3]

L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[4]

L. Arnold and B. Schmalfuss, Fixed Points and Attractors for Random Dynamical Systems, in IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, Solid Mechanics and its Applications (eds. A. Naess and S. Krenk), Springer, Dordrecht, 47 (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3. Google Scholar

[5]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, vol. 184, Springer, 2013. doi: 10.1007/978-1-4614-4581-4. Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277. Google Scholar

[8]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar

[10]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117 (2015), 173-206. doi: 10.1365/s13291-015-0115-0. Google Scholar

[11]

H. CunY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 303-324. doi: 10.1016/j.na.2015.08.009. Google Scholar

[12]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466. doi: 10.1016/S0006-3495(61)86902-6. Google Scholar

[13]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. Google Scholar

[14]

F. FlandoliM. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180 (2010), 1-53. doi: 10.1007/s00222-009-0224-4. Google Scholar

[15]

O. Goubet and R. M. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53. doi: 10.1006/jdeq.2001.4163. Google Scholar

[16]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $R^n$, J. Differential Equations, 264 (2018), 7094-7137. doi: 10.1016/j.jde.2018.02.011. Google Scholar

[17]

A. Haraux, Two remarks on hyperbolic dissipative problems, in Nonlinear Partial Differential Equations and their Applications (eds. H. Brezis and J. L. Lions), College de France Seminar, Vol. Ⅶ, Pitman, London, 122 (1985), 161-179. Google Scholar

[18]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233 (2007), 83-94. doi: 10.1016/j.physd.2007.06.008. Google Scholar

[19]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753. Google Scholar

[20]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations, J. Difference. Equ. Appl., 6 (2000), 33-52. doi: 10.1080/10236190008808212. Google Scholar

[21]

P. E. Kloeden and T. Lorenz, Pullback and forward attractors of nonautonomous difference equations, in Proceedings of ICDEAWuhan 2014 (eds. M. Bohner, Y. Ding and O. Dosly), Springer-Verlag, Heidelberg, 150 (2015), 37-48. doi: 10.1007/978-3-319-24747-2_3. Google Scholar

[22]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268. doi: 10.1090/proc/12735. Google Scholar

[23]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference. Equ. Appl., 22 (2016), 513-525. doi: 10.1080/10236198.2015.1107550. Google Scholar

[24]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dynam. Syst. Ser. B, 21 (2016), 1203-1223. doi: 10.3934/dcdsb.2016.21.1203. Google Scholar

[25]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[26]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021. Google Scholar

[27]

J. NagumoS. Arimoto and S. Yosimzawa, An active pulse transimission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070. Google Scholar

[28]

J. C. Robinson, Infinite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar

[29]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, (1992), 185-192.Google Scholar

[30]

B. Schmalfuß, Attractors for the nonautonomous dynamical systems, in International Conference on Differential Equations (eds. B. Fiedler, K. Gröger and J. Sprekels), World Sci. Publishing, Singapore, (2000), 684-690. Google Scholar

[31]

B. Tang, Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 35 (2015), 441-466. doi: 10.3934/dcds.2015.35.441. Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[33]

M. J. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Boston, 1988. doi: 10.1007/978-94-009-1423-0. Google Scholar

[34]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815. doi: 10.1016/j.na.2008.07.011. Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave euqations with multiplicative noises, Discrete Contin. Dynam. Syst., 34 (2014), 269-330. doi: 10.3934/dcds.2014.34.269. Google Scholar

[36]

B. Wang, Random attractors for the FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 71 (2009), 2811-2828. doi: 10.1016/j.na.2009.01.131. Google Scholar

[37]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[38]

Y. WangY. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference Equ. Appl., 14 (2008), 799-817. doi: 10.1080/10236190701859542. Google Scholar

[39]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616. doi: 10.11650/tjm.20.2016.6699. Google Scholar

[40]

W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_ρ^p$, Appl. Math. Comput., 291 (2016), 226-243. doi: 10.1016/j.amc.2016.06.045. Google Scholar

[41]

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput., 239 (2014), 358-374. doi: 10.1016/j.amc.2014.04.106. Google Scholar

[42]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824. doi: 10.1016/j.camwa.2018.02.031. Google Scholar

[43]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$with an unbounded additive noise, J. Math. Anal. App., 455 (2017), 1178-1203. doi: 10.1016/j.jmaa.2017.06.025. Google Scholar

[44]

W. Zhao, Long-time random dynamics of stochastic parabolic $p$-Laplacian equations on $\mathbb{R}^N$, Nonliner Anal., 152 (2017), 196-219. doi: 10.1016/j.na.2017.01.004. Google Scholar

[45]

W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise, Discrete Contin. Dynam. Syst. Ser. B. doi: 10.3934/dcdsb.2018065. Google Scholar

[46]

S. Zhou and Z. Wang, Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise, J. Math. Anal. Appl., 441 (2016), 648-667. doi: 10.1016/j.jmaa.2016.04.038. Google Scholar

[47]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105. doi: 10.1016/j.camwa.2016.04.004. Google Scholar

[1]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[2]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[3]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[4]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[5]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[6]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[7]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[8]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[9]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[10]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[11]

Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

[12]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[13]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[14]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[15]

Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056

[16]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[17]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[18]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[19]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[20]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (191)
  • HTML views (781)
  • Cited by (0)

Other articles
by authors

[Back to Top]