• Previous Article
    Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition
  • DCDS-B Home
  • This Issue
  • Next Article
    Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise
October  2018, 23(8): 3297-3308. doi: 10.3934/dcdsb.2018252

Global Kneser solutions to nonlinear equations with indefinite weight

1. 

Department of Mathematics and Statistics, Masaryk University, CZ-61137 Brno, Czech Republic

2. 

Department of Mathematics and Computer Sciences "Ulisse Dini", University of Florence, I-50139 Florence, Italy

* Corresponding author: Serena Matucci

Received  March 2018 Published  August 2018

Fund Project: The first author is supported by the grant GA 17-03224S of the Czech Grant Agency. The third author is partially supported by Gnampa, National Institute for Advanced Mathematics (INdAM)

The paper deals with the nonlinear differential equation
$\bigl(a(t)\Phi(x^{\prime})\bigr)^{\prime}+b(t)F(x)=0,\ \ \ t\in\lbrack1,\infty),$
in the case when the weight
$b$
has indefinite sign. In particular, the problem of the existence of the so-called globally positive Kneser solutions, that is solutions
$x$
such that
$x(t)>0, {{x}'}(t)<0$
on the whole closed interval
$[1,\infty )$
, is considered. Moreover, conditions assuring that these solutions tend to zero as
$t\rightarrow\infty$
are investigated by a Schauder's half-linearization device jointly with some properties of the principal solution of an associated half-linear differential equation. The results cover also the case in which the weight
$b$
is a periodic function or it is unbounded from below.
Citation: Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252
References:
[1]

J. AndresG. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., 351 (1999), 4861-4903. doi: 10.1090/S0002-9947-99-02297-7. Google Scholar

[2]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478. doi: 10.1007/s10231-013-0384-0. Google Scholar

[3]

M. CecchiZ. Došlá and M. Marini, Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl., 13 (2004), 221-232. Google Scholar

[4]

M. CecchiZ. Došlá and M. Marini, Half-linear differential equations with oscillating coefficient, Differential Integral Equations, 18 (2005), 1243-1256. Google Scholar

[5]

M. CecchiZ. DošláI. Kiguradze and M. Marini, On nonnegative solutions of singular boundary-value problems for Emden-Fowler-type differential systems, Differential Integral Equations, 20 (2007), 1081-1106. Google Scholar

[6]

M. CecchiM. Furi and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal., 9 (1985), 171-180. doi: 10.1016/0362-546X(85)90070-7. Google Scholar

[7]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985. Google Scholar

[8]

Z. DošláM. Marini and S. Matucci, On some boundary value problems for second order nonlinear differential equations, Math. Bohem., 137 (2012), 113-122. Google Scholar

[9]

Z. DošláM. Marini and S. Matucci, A boundary value problem on a half-line for differential equations with indefinite weight, Commun. Appl. Anal., 15 (2011), 341-352. Google Scholar

[10]

Z. DošláM. Marini and S. Matucci, Positive solutions of nonlocal continuous second order BVP's, Dynam. Systems Appl., 23 (2014), 431-446. Google Scholar

[11]

Z. DošláM. Marini and S. Matucci, A Dirichlet problem on the half-line for nonlinear equations with indefinite weight, Ann. Mat. Pura Appl., 196 (2017), 51-64. doi: 10.1007/s10231-016-0562-y. Google Scholar

[12]

O. Došlý and A. Elbert, Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar., 36 (2000), 455-469. doi: 10.1556/SScMath.36.2000.3-4.16. Google Scholar

[13]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier Sci. B. V., Amsterdam, 2005. Google Scholar

[14]

P. Drábek and A. Kufner, Discreteness and symplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval, Proc. Amer. Math. Soc., 134 (2006), 235-242. doi: 10.1090/S0002-9939-05-07958-X. Google Scholar

[15]

P. DrábekA. Kufner and K. Kuliev, Half-linear Sturm Liouville problem with weights: Asymptotic behavior of eigenfunctions, Proc. Steklov Inst. Math., 284 (2014), 148-154. doi: 10.1134/S008154381401009X. Google Scholar

[16]

A. Elbert and T. Kusano, Principal solutions of non-oscillatory half-linear differential equations, Adv. Math. Sci. Appl., 8 (1998), 745-759. Google Scholar

[17]

P. Hartman, Ordinary Differential Equations, Reprint of the second edition, Birkäuser, Boston, Mass., 1982. Google Scholar

[18]

J. Jaroš and T. Kusano, Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66 (2014), 273-289. doi: 10.1007/s00025-014-0376-4. Google Scholar

[19]

K. Kamo, Asymptotic equivalence for positive decaying solutions of the generalized Emden-Fowler equations and its application to elliptic problems, Arch. Math. (Brno), 40 (2004), 209-217. Google Scholar

[20]

I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ. G., Dordrecht, 1993. doi: 10.1007/978-94-011-1808-8. Google Scholar

[21]

T. KusanoV. Marić and T. Tanigawa, Regularly varying solutions of generalized Thomas-Fermi equations, Bull. Cl. Sci. Math. Nat. Sci. Math., 34 (2009), 43-73. Google Scholar

[22]

M. Marini and S. Matucci, A boundary value problem on the half-line for superlinear differential equations with changing sign weight, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 117–132. Google Scholar

[23]

S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Mathematica Bohemica, 140 (2015), 153-169. Google Scholar

[24]

V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103952. Google Scholar

[25]

D. D. Mirzov, Principal and nonprincipal solutions of a nonlinear system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100-117. Google Scholar

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673-693. doi: 10.1112/S0024610706023179. Google Scholar

show all references

References:
[1]

J. AndresG. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., 351 (1999), 4861-4903. doi: 10.1090/S0002-9947-99-02297-7. Google Scholar

[2]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478. doi: 10.1007/s10231-013-0384-0. Google Scholar

[3]

M. CecchiZ. Došlá and M. Marini, Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl., 13 (2004), 221-232. Google Scholar

[4]

M. CecchiZ. Došlá and M. Marini, Half-linear differential equations with oscillating coefficient, Differential Integral Equations, 18 (2005), 1243-1256. Google Scholar

[5]

M. CecchiZ. DošláI. Kiguradze and M. Marini, On nonnegative solutions of singular boundary-value problems for Emden-Fowler-type differential systems, Differential Integral Equations, 20 (2007), 1081-1106. Google Scholar

[6]

M. CecchiM. Furi and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal., 9 (1985), 171-180. doi: 10.1016/0362-546X(85)90070-7. Google Scholar

[7]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985. Google Scholar

[8]

Z. DošláM. Marini and S. Matucci, On some boundary value problems for second order nonlinear differential equations, Math. Bohem., 137 (2012), 113-122. Google Scholar

[9]

Z. DošláM. Marini and S. Matucci, A boundary value problem on a half-line for differential equations with indefinite weight, Commun. Appl. Anal., 15 (2011), 341-352. Google Scholar

[10]

Z. DošláM. Marini and S. Matucci, Positive solutions of nonlocal continuous second order BVP's, Dynam. Systems Appl., 23 (2014), 431-446. Google Scholar

[11]

Z. DošláM. Marini and S. Matucci, A Dirichlet problem on the half-line for nonlinear equations with indefinite weight, Ann. Mat. Pura Appl., 196 (2017), 51-64. doi: 10.1007/s10231-016-0562-y. Google Scholar

[12]

O. Došlý and A. Elbert, Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar., 36 (2000), 455-469. doi: 10.1556/SScMath.36.2000.3-4.16. Google Scholar

[13]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier Sci. B. V., Amsterdam, 2005. Google Scholar

[14]

P. Drábek and A. Kufner, Discreteness and symplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval, Proc. Amer. Math. Soc., 134 (2006), 235-242. doi: 10.1090/S0002-9939-05-07958-X. Google Scholar

[15]

P. DrábekA. Kufner and K. Kuliev, Half-linear Sturm Liouville problem with weights: Asymptotic behavior of eigenfunctions, Proc. Steklov Inst. Math., 284 (2014), 148-154. doi: 10.1134/S008154381401009X. Google Scholar

[16]

A. Elbert and T. Kusano, Principal solutions of non-oscillatory half-linear differential equations, Adv. Math. Sci. Appl., 8 (1998), 745-759. Google Scholar

[17]

P. Hartman, Ordinary Differential Equations, Reprint of the second edition, Birkäuser, Boston, Mass., 1982. Google Scholar

[18]

J. Jaroš and T. Kusano, Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66 (2014), 273-289. doi: 10.1007/s00025-014-0376-4. Google Scholar

[19]

K. Kamo, Asymptotic equivalence for positive decaying solutions of the generalized Emden-Fowler equations and its application to elliptic problems, Arch. Math. (Brno), 40 (2004), 209-217. Google Scholar

[20]

I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ. G., Dordrecht, 1993. doi: 10.1007/978-94-011-1808-8. Google Scholar

[21]

T. KusanoV. Marić and T. Tanigawa, Regularly varying solutions of generalized Thomas-Fermi equations, Bull. Cl. Sci. Math. Nat. Sci. Math., 34 (2009), 43-73. Google Scholar

[22]

M. Marini and S. Matucci, A boundary value problem on the half-line for superlinear differential equations with changing sign weight, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 117–132. Google Scholar

[23]

S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Mathematica Bohemica, 140 (2015), 153-169. Google Scholar

[24]

V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103952. Google Scholar

[25]

D. D. Mirzov, Principal and nonprincipal solutions of a nonlinear system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100-117. Google Scholar

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673-693. doi: 10.1112/S0024610706023179. Google Scholar

[1]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[2]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[3]

Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear third-order equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1223-1236. doi: 10.3934/cpaa.2014.13.1223

[4]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[5]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[6]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[7]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[8]

Gafurjan Ibragimov, Askar Rakhmanov, Idham Arif Alias, Mai Zurwatul Ahlam Mohd Jaffar. The soft landing problem for an infinite system of second order differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 89-94. doi: 10.3934/naco.2017005

[9]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[10]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

[11]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[12]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[13]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[14]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[15]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[16]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[17]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[18]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[19]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[20]

Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (34)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]