• Previous Article
    Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise
  • DCDS-B Home
  • This Issue
  • Next Article
    Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition
October  2018, 23(8): 3297-3308. doi: 10.3934/dcdsb.2018252

Global Kneser solutions to nonlinear equations with indefinite weight

1. 

Department of Mathematics and Statistics, Masaryk University, CZ-61137 Brno, Czech Republic

2. 

Department of Mathematics and Computer Sciences "Ulisse Dini", University of Florence, I-50139 Florence, Italy

* Corresponding author: Serena Matucci

Received  March 2018 Published  October 2018 Early access  August 2018

Fund Project: The first author is supported by the grant GA 17-03224S of the Czech Grant Agency. The third author is partially supported by Gnampa, National Institute for Advanced Mathematics (INdAM).

The paper deals with the nonlinear differential equation
$\bigl(a(t)\Phi(x^{\prime})\bigr)^{\prime}+b(t)F(x)=0,\ \ \ t\in\lbrack1,\infty),$
in the case when the weight
$b$
has indefinite sign. In particular, the problem of the existence of the so-called globally positive Kneser solutions, that is solutions
$x$
such that
$x(t)>0, {{x}'}(t)<0$
on the whole closed interval
$[1,\infty )$
, is considered. Moreover, conditions assuring that these solutions tend to zero as
$t\rightarrow\infty$
are investigated by a Schauder's half-linearization device jointly with some properties of the principal solution of an associated half-linear differential equation. The results cover also the case in which the weight
$b$
is a periodic function or it is unbounded from below.
Citation: Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252
References:
[1]

J. AndresG. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., 351 (1999), 4861-4903.  doi: 10.1090/S0002-9947-99-02297-7.

[2]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.  doi: 10.1007/s10231-013-0384-0.

[3]

M. CecchiZ. Došlá and M. Marini, Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl., 13 (2004), 221-232. 

[4]

M. CecchiZ. Došlá and M. Marini, Half-linear differential equations with oscillating coefficient, Differential Integral Equations, 18 (2005), 1243-1256. 

[5]

M. CecchiZ. DošláI. Kiguradze and M. Marini, On nonnegative solutions of singular boundary-value problems for Emden-Fowler-type differential systems, Differential Integral Equations, 20 (2007), 1081-1106. 

[6]

M. CecchiM. Furi and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal., 9 (1985), 171-180.  doi: 10.1016/0362-546X(85)90070-7.

[7]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[8]

Z. DošláM. Marini and S. Matucci, On some boundary value problems for second order nonlinear differential equations, Math. Bohem., 137 (2012), 113-122. 

[9]

Z. DošláM. Marini and S. Matucci, A boundary value problem on a half-line for differential equations with indefinite weight, Commun. Appl. Anal., 15 (2011), 341-352. 

[10]

Z. DošláM. Marini and S. Matucci, Positive solutions of nonlocal continuous second order BVP's, Dynam. Systems Appl., 23 (2014), 431-446. 

[11]

Z. DošláM. Marini and S. Matucci, A Dirichlet problem on the half-line for nonlinear equations with indefinite weight, Ann. Mat. Pura Appl., 196 (2017), 51-64.  doi: 10.1007/s10231-016-0562-y.

[12]

O. Došlý and A. Elbert, Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar., 36 (2000), 455-469.  doi: 10.1556/SScMath.36.2000.3-4.16.

[13]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier Sci. B. V., Amsterdam, 2005.

[14]

P. Drábek and A. Kufner, Discreteness and symplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval, Proc. Amer. Math. Soc., 134 (2006), 235-242.  doi: 10.1090/S0002-9939-05-07958-X.

[15]

P. DrábekA. Kufner and K. Kuliev, Half-linear Sturm Liouville problem with weights: Asymptotic behavior of eigenfunctions, Proc. Steklov Inst. Math., 284 (2014), 148-154.  doi: 10.1134/S008154381401009X.

[16]

A. Elbert and T. Kusano, Principal solutions of non-oscillatory half-linear differential equations, Adv. Math. Sci. Appl., 8 (1998), 745-759. 

[17]

P. Hartman, Ordinary Differential Equations, Reprint of the second edition, Birkäuser, Boston, Mass., 1982.

[18]

J. Jaroš and T. Kusano, Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66 (2014), 273-289.  doi: 10.1007/s00025-014-0376-4.

[19]

K. Kamo, Asymptotic equivalence for positive decaying solutions of the generalized Emden-Fowler equations and its application to elliptic problems, Arch. Math. (Brno), 40 (2004), 209-217. 

[20]

I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ. G., Dordrecht, 1993. doi: 10.1007/978-94-011-1808-8.

[21]

T. KusanoV. Marić and T. Tanigawa, Regularly varying solutions of generalized Thomas-Fermi equations, Bull. Cl. Sci. Math. Nat. Sci. Math., 34 (2009), 43-73. 

[22]

M. Marini and S. Matucci, A boundary value problem on the half-line for superlinear differential equations with changing sign weight, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 117–132.

[23]

S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Mathematica Bohemica, 140 (2015), 153-169. 

[24]

V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103952.

[25]

D. D. Mirzov, Principal and nonprincipal solutions of a nonlinear system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100-117. 

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673-693.  doi: 10.1112/S0024610706023179.

show all references

References:
[1]

J. AndresG. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., 351 (1999), 4861-4903.  doi: 10.1090/S0002-9947-99-02297-7.

[2]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.  doi: 10.1007/s10231-013-0384-0.

[3]

M. CecchiZ. Došlá and M. Marini, Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl., 13 (2004), 221-232. 

[4]

M. CecchiZ. Došlá and M. Marini, Half-linear differential equations with oscillating coefficient, Differential Integral Equations, 18 (2005), 1243-1256. 

[5]

M. CecchiZ. DošláI. Kiguradze and M. Marini, On nonnegative solutions of singular boundary-value problems for Emden-Fowler-type differential systems, Differential Integral Equations, 20 (2007), 1081-1106. 

[6]

M. CecchiM. Furi and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal., 9 (1985), 171-180.  doi: 10.1016/0362-546X(85)90070-7.

[7]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[8]

Z. DošláM. Marini and S. Matucci, On some boundary value problems for second order nonlinear differential equations, Math. Bohem., 137 (2012), 113-122. 

[9]

Z. DošláM. Marini and S. Matucci, A boundary value problem on a half-line for differential equations with indefinite weight, Commun. Appl. Anal., 15 (2011), 341-352. 

[10]

Z. DošláM. Marini and S. Matucci, Positive solutions of nonlocal continuous second order BVP's, Dynam. Systems Appl., 23 (2014), 431-446. 

[11]

Z. DošláM. Marini and S. Matucci, A Dirichlet problem on the half-line for nonlinear equations with indefinite weight, Ann. Mat. Pura Appl., 196 (2017), 51-64.  doi: 10.1007/s10231-016-0562-y.

[12]

O. Došlý and A. Elbert, Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar., 36 (2000), 455-469.  doi: 10.1556/SScMath.36.2000.3-4.16.

[13]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier Sci. B. V., Amsterdam, 2005.

[14]

P. Drábek and A. Kufner, Discreteness and symplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval, Proc. Amer. Math. Soc., 134 (2006), 235-242.  doi: 10.1090/S0002-9939-05-07958-X.

[15]

P. DrábekA. Kufner and K. Kuliev, Half-linear Sturm Liouville problem with weights: Asymptotic behavior of eigenfunctions, Proc. Steklov Inst. Math., 284 (2014), 148-154.  doi: 10.1134/S008154381401009X.

[16]

A. Elbert and T. Kusano, Principal solutions of non-oscillatory half-linear differential equations, Adv. Math. Sci. Appl., 8 (1998), 745-759. 

[17]

P. Hartman, Ordinary Differential Equations, Reprint of the second edition, Birkäuser, Boston, Mass., 1982.

[18]

J. Jaroš and T. Kusano, Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66 (2014), 273-289.  doi: 10.1007/s00025-014-0376-4.

[19]

K. Kamo, Asymptotic equivalence for positive decaying solutions of the generalized Emden-Fowler equations and its application to elliptic problems, Arch. Math. (Brno), 40 (2004), 209-217. 

[20]

I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ. G., Dordrecht, 1993. doi: 10.1007/978-94-011-1808-8.

[21]

T. KusanoV. Marić and T. Tanigawa, Regularly varying solutions of generalized Thomas-Fermi equations, Bull. Cl. Sci. Math. Nat. Sci. Math., 34 (2009), 43-73. 

[22]

M. Marini and S. Matucci, A boundary value problem on the half-line for superlinear differential equations with changing sign weight, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 117–132.

[23]

S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Mathematica Bohemica, 140 (2015), 153-169. 

[24]

V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103952.

[25]

D. D. Mirzov, Principal and nonprincipal solutions of a nonlinear system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100-117. 

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673-693.  doi: 10.1112/S0024610706023179.

[1]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[2]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[3]

Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear third-order equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1223-1236. doi: 10.3934/cpaa.2014.13.1223

[4]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[5]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[6]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[7]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[8]

Gafurjan Ibragimov, Askar Rakhmanov, Idham Arif Alias, Mai Zurwatul Ahlam Mohd Jaffar. The soft landing problem for an infinite system of second order differential equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 89-94. doi: 10.3934/naco.2017005

[9]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[10]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

[11]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[12]

David Cheban, Zhenxin Liu. Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29 (4) : 2791-2817. doi: 10.3934/era.2021014

[13]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[14]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[15]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[16]

Hildebrando M. Rodrigues, J. Solà-Morales, G. K. Nakassima. Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3189-3207. doi: 10.3934/cpaa.2020138

[17]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[18]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[19]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[20]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (260)
  • HTML views (139)
  • Cited by (1)

Other articles
by authors

[Back to Top]