• Previous Article
    Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise
  • DCDS-B Home
  • This Issue
  • Next Article
    Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition
October  2018, 23(8): 3297-3308. doi: 10.3934/dcdsb.2018252

Global Kneser solutions to nonlinear equations with indefinite weight

1. 

Department of Mathematics and Statistics, Masaryk University, CZ-61137 Brno, Czech Republic

2. 

Department of Mathematics and Computer Sciences "Ulisse Dini", University of Florence, I-50139 Florence, Italy

* Corresponding author: Serena Matucci

Received  March 2018 Published  August 2018

Fund Project: The first author is supported by the grant GA 17-03224S of the Czech Grant Agency. The third author is partially supported by Gnampa, National Institute for Advanced Mathematics (INdAM).

The paper deals with the nonlinear differential equation
$\bigl(a(t)\Phi(x^{\prime})\bigr)^{\prime}+b(t)F(x)=0,\ \ \ t\in\lbrack1,\infty),$
in the case when the weight
$b$
has indefinite sign. In particular, the problem of the existence of the so-called globally positive Kneser solutions, that is solutions
$x$
such that
$x(t)>0, {{x}'}(t)<0$
on the whole closed interval
$[1,\infty )$
, is considered. Moreover, conditions assuring that these solutions tend to zero as
$t\rightarrow\infty$
are investigated by a Schauder's half-linearization device jointly with some properties of the principal solution of an associated half-linear differential equation. The results cover also the case in which the weight
$b$
is a periodic function or it is unbounded from below.
Citation: Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252
References:
[1]

J. AndresG. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., 351 (1999), 4861-4903.  doi: 10.1090/S0002-9947-99-02297-7.  Google Scholar

[2]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.  doi: 10.1007/s10231-013-0384-0.  Google Scholar

[3]

M. CecchiZ. Došlá and M. Marini, Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl., 13 (2004), 221-232.   Google Scholar

[4]

M. CecchiZ. Došlá and M. Marini, Half-linear differential equations with oscillating coefficient, Differential Integral Equations, 18 (2005), 1243-1256.   Google Scholar

[5]

M. CecchiZ. DošláI. Kiguradze and M. Marini, On nonnegative solutions of singular boundary-value problems for Emden-Fowler-type differential systems, Differential Integral Equations, 20 (2007), 1081-1106.   Google Scholar

[6]

M. CecchiM. Furi and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal., 9 (1985), 171-180.  doi: 10.1016/0362-546X(85)90070-7.  Google Scholar

[7]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[8]

Z. DošláM. Marini and S. Matucci, On some boundary value problems for second order nonlinear differential equations, Math. Bohem., 137 (2012), 113-122.   Google Scholar

[9]

Z. DošláM. Marini and S. Matucci, A boundary value problem on a half-line for differential equations with indefinite weight, Commun. Appl. Anal., 15 (2011), 341-352.   Google Scholar

[10]

Z. DošláM. Marini and S. Matucci, Positive solutions of nonlocal continuous second order BVP's, Dynam. Systems Appl., 23 (2014), 431-446.   Google Scholar

[11]

Z. DošláM. Marini and S. Matucci, A Dirichlet problem on the half-line for nonlinear equations with indefinite weight, Ann. Mat. Pura Appl., 196 (2017), 51-64.  doi: 10.1007/s10231-016-0562-y.  Google Scholar

[12]

O. Došlý and A. Elbert, Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar., 36 (2000), 455-469.  doi: 10.1556/SScMath.36.2000.3-4.16.  Google Scholar

[13]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier Sci. B. V., Amsterdam, 2005.  Google Scholar

[14]

P. Drábek and A. Kufner, Discreteness and symplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval, Proc. Amer. Math. Soc., 134 (2006), 235-242.  doi: 10.1090/S0002-9939-05-07958-X.  Google Scholar

[15]

P. DrábekA. Kufner and K. Kuliev, Half-linear Sturm Liouville problem with weights: Asymptotic behavior of eigenfunctions, Proc. Steklov Inst. Math., 284 (2014), 148-154.  doi: 10.1134/S008154381401009X.  Google Scholar

[16]

A. Elbert and T. Kusano, Principal solutions of non-oscillatory half-linear differential equations, Adv. Math. Sci. Appl., 8 (1998), 745-759.   Google Scholar

[17]

P. Hartman, Ordinary Differential Equations, Reprint of the second edition, Birkäuser, Boston, Mass., 1982.  Google Scholar

[18]

J. Jaroš and T. Kusano, Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66 (2014), 273-289.  doi: 10.1007/s00025-014-0376-4.  Google Scholar

[19]

K. Kamo, Asymptotic equivalence for positive decaying solutions of the generalized Emden-Fowler equations and its application to elliptic problems, Arch. Math. (Brno), 40 (2004), 209-217.   Google Scholar

[20]

I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ. G., Dordrecht, 1993. doi: 10.1007/978-94-011-1808-8.  Google Scholar

[21]

T. KusanoV. Marić and T. Tanigawa, Regularly varying solutions of generalized Thomas-Fermi equations, Bull. Cl. Sci. Math. Nat. Sci. Math., 34 (2009), 43-73.   Google Scholar

[22]

M. Marini and S. Matucci, A boundary value problem on the half-line for superlinear differential equations with changing sign weight, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 117–132.  Google Scholar

[23]

S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Mathematica Bohemica, 140 (2015), 153-169.   Google Scholar

[24]

V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103952.  Google Scholar

[25]

D. D. Mirzov, Principal and nonprincipal solutions of a nonlinear system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100-117.   Google Scholar

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673-693.  doi: 10.1112/S0024610706023179.  Google Scholar

show all references

References:
[1]

J. AndresG. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc., 351 (1999), 4861-4903.  doi: 10.1090/S0002-9947-99-02297-7.  Google Scholar

[2]

A. Boscaggin and F. Zanolin, Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem, Ann. Mat. Pura Appl., 194 (2015), 451-478.  doi: 10.1007/s10231-013-0384-0.  Google Scholar

[3]

M. CecchiZ. Došlá and M. Marini, Principal solutions and minimal sets of quasilinear differential equations, Dynam. Systems Appl., 13 (2004), 221-232.   Google Scholar

[4]

M. CecchiZ. Došlá and M. Marini, Half-linear differential equations with oscillating coefficient, Differential Integral Equations, 18 (2005), 1243-1256.   Google Scholar

[5]

M. CecchiZ. DošláI. Kiguradze and M. Marini, On nonnegative solutions of singular boundary-value problems for Emden-Fowler-type differential systems, Differential Integral Equations, 20 (2007), 1081-1106.   Google Scholar

[6]

M. CecchiM. Furi and M. Marini, On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear Anal., 9 (1985), 171-180.  doi: 10.1016/0362-546X(85)90070-7.  Google Scholar

[7]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.  Google Scholar

[8]

Z. DošláM. Marini and S. Matucci, On some boundary value problems for second order nonlinear differential equations, Math. Bohem., 137 (2012), 113-122.   Google Scholar

[9]

Z. DošláM. Marini and S. Matucci, A boundary value problem on a half-line for differential equations with indefinite weight, Commun. Appl. Anal., 15 (2011), 341-352.   Google Scholar

[10]

Z. DošláM. Marini and S. Matucci, Positive solutions of nonlocal continuous second order BVP's, Dynam. Systems Appl., 23 (2014), 431-446.   Google Scholar

[11]

Z. DošláM. Marini and S. Matucci, A Dirichlet problem on the half-line for nonlinear equations with indefinite weight, Ann. Mat. Pura Appl., 196 (2017), 51-64.  doi: 10.1007/s10231-016-0562-y.  Google Scholar

[12]

O. Došlý and A. Elbert, Integral characterization of principal solution of half-linear differential equations, Studia Sci. Math. Hungar., 36 (2000), 455-469.  doi: 10.1556/SScMath.36.2000.3-4.16.  Google Scholar

[13]

O. Došlý and P. Řehák, Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier Sci. B. V., Amsterdam, 2005.  Google Scholar

[14]

P. Drábek and A. Kufner, Discreteness and symplicity of the spectrum of a quasilinear Sturm-Liouville-type problem on an infinite interval, Proc. Amer. Math. Soc., 134 (2006), 235-242.  doi: 10.1090/S0002-9939-05-07958-X.  Google Scholar

[15]

P. DrábekA. Kufner and K. Kuliev, Half-linear Sturm Liouville problem with weights: Asymptotic behavior of eigenfunctions, Proc. Steklov Inst. Math., 284 (2014), 148-154.  doi: 10.1134/S008154381401009X.  Google Scholar

[16]

A. Elbert and T. Kusano, Principal solutions of non-oscillatory half-linear differential equations, Adv. Math. Sci. Appl., 8 (1998), 745-759.   Google Scholar

[17]

P. Hartman, Ordinary Differential Equations, Reprint of the second edition, Birkäuser, Boston, Mass., 1982.  Google Scholar

[18]

J. Jaroš and T. Kusano, Decreasing regularly varying solutions of sublinearly perturbed superlinear Thomas-Fermi equation, Results Math., 66 (2014), 273-289.  doi: 10.1007/s00025-014-0376-4.  Google Scholar

[19]

K. Kamo, Asymptotic equivalence for positive decaying solutions of the generalized Emden-Fowler equations and its application to elliptic problems, Arch. Math. (Brno), 40 (2004), 209-217.   Google Scholar

[20]

I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ. G., Dordrecht, 1993. doi: 10.1007/978-94-011-1808-8.  Google Scholar

[21]

T. KusanoV. Marić and T. Tanigawa, Regularly varying solutions of generalized Thomas-Fermi equations, Bull. Cl. Sci. Math. Nat. Sci. Math., 34 (2009), 43-73.   Google Scholar

[22]

M. Marini and S. Matucci, A boundary value problem on the half-line for superlinear differential equations with changing sign weight, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 117–132.  Google Scholar

[23]

S. Matucci, A new approach for solving nonlinear BVP's on the half-line for second order equations and applications, Mathematica Bohemica, 140 (2015), 153-169.   Google Scholar

[24]

V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103952.  Google Scholar

[25]

D. D. Mirzov, Principal and nonprincipal solutions of a nonlinear system, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 31 (1988), 100-117.   Google Scholar

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc., 74 (2006), 673-693.  doi: 10.1112/S0024610706023179.  Google Scholar

[1]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[17]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[20]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (125)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]