
-
Previous Article
Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness
- DCDS-B Home
- This Issue
-
Next Article
Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics
Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics
1. | Department of Mathematics, Ryerson University, Toronto, Ontario, Canada M5B 2K3 |
2. | School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai 200433, China |
Lyapunov type inequalities for (linear or nonlinear) Hammerstein integral equations are established and applied to second order differential equations (ODEs) with general separated boundary conditions. These new inequalities provide necessary conditions for the Hammerstein integral equations and these boundary value problems to have nonzero nonnegative solutions. As applications of these inequalities for nonlinear ODEs, we obtain extinction criteria and optimal locations of favorable habitats for populations inhabiting one dimensional heterogeneous environments governed by reaction-diffusion equations with spatially varying growth rates and external forcing.
References:
[1] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., bf 18 (1976), 620–709
doi: 10.1137/1018114. |
[2] |
J. F. Bonder, J. P. Pinasco and A. M. Salort,
A Lyapunoy type inequality for indefinite weights and eigenvalue homogenization, Proc. Amer. Math. Soc., 144 (2015), 1669-1680.
doi: 10.1090/proc/12871. |
[3] |
G. Borg, On a Lyapunov criterion of stability, Amer. J. Math., 71 (1949), 67-70. Google Scholar |
[4] |
R. C. Brown and D. B. Hinton,
Opial's inequality and oscillation of second-order equations, Proc. Amer. Math. Soc., 125 (1997), 1123-1129.
doi: 10.1090/S0002-9939-97-03907-5. |
[5] |
A. Canada, J. A. Montero and S. Villeges,
Lynapunov inequalities for partial differential equations, J. Funct. Anal., 237 (2006), 176-193.
doi: 10.1016/j.jfa.2005.12.011. |
[6] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X. |
[7] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[8] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weigts: Population models in disrupted environments Ⅱ, SIAM J. Appl. Math., 22 (1991), 1043-1064.
doi: 10.1137/0522068. |
[9] |
A. M. Das and A. S. Vatsala,
Green function for n-n boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl., 51 (1975), 670-677.
doi: 10.1016/0022-247X(75)90117-1. |
[10] |
P. L. de Nápoli and J. P. Pinasco,
Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270 (2016), 1995-2018.
doi: 10.1016/j.jfa.2016.01.006. |
[11] |
P. L. de Nápoli and J. P. Pinasco,
A Lyapunov inequality for monotone quasilinear operators, Differential Integral Equations, 18 (2005), 1193-1200.
|
[12] |
W. Ding, H. Finotti, S. Lenhart, Y. Lou and Q. Ye,
Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Applications, 11 (2010), 688-704.
doi: 10.1016/j.nonrwa.2009.01.015. |
[13] |
R. A. C. Ferreira,
On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063.
doi: 10.1016/j.jmaa.2013.11.025. |
[14] |
A. M. Fink and D. F. St. Mary,
On an inequality of Nehari, Proc. Amer. Math. Soc., 21 (1969), 640-642.
doi: 10.1090/S0002-9939-1969-0240388-0. |
[15] |
C. Ha,
Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type, Proc. Amer. Math. Soc., 126 (1998), 3507-3511.
doi: 10.1090/S0002-9939-98-05010-2. |
[16] |
P. Hartman, Ordinary Differential Equations, Boston, 1982. |
[17] |
M. Hintermüller, C. Y. Kao and A. Laurain,
Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions, Appl. Math. Optim., 65 (2012), 111-146.
doi: 10.1007/s00245-011-9153-x. |
[18] |
D. B. Hinton,
A criterion for n-n oscillation in differential equations of order 2n, Proc. Amer. Math. Soc., 19 (1968), 511-518.
doi: 10.2307/2035825. |
[19] |
M. Jleli and B. Samet,
Lyapunov-type inequality for fractional boundary value problems, Electron. J. Differ. Eqn., (2015), 1-11.
|
[20] |
K. Q. Lan,
Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001), 690-704.
doi: 10.1112/S002461070100206X. |
[21] |
K. Q. Lan and W. Lin,
Population models with quasi-constant-yield harvest rates, Math. Biosci. Eng., 14 (2017), 467-490.
doi: 10.3934/mbe.2017029. |
[22] |
K. Q. Lan and J. R. L. Webb,
Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.
doi: 10.1006/jdeq.1998.3475. |
[23] |
K. Q. Lan and G. C. Yang,
Optimal constants for two point boundary value problems, Discrete Contin. Dyn. Syst. Suppl., (2007), 624-633.
|
[24] |
D. Ludwig, D. C. Aronson and H. F. Weinberger,
Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.
doi: 10.1007/BF00276310. |
[25] |
R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. |
[26] |
M. G. Neubert,
Marine reserves and optimal harvesting, Ecol. Lett., 6 (2003), 843-849.
doi: 10.1046/j.1461-0248.2003.00493.x. |
[27] |
L. Roques and M. D. Chekroun,
On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.
doi: 10.1137/060676994. |
[28] |
L. Roques and F. Hamel,
Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci., 210 (2007), 34-59.
doi: 10.1016/j.mbs.2007.05.007. |
[29] |
P. A. Stephens and W. J. Sutherland,
Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol., 14 (1999), 401-405.
doi: 10.1016/S0169-5347(99)01684-5. |
[30] |
P. A. Stephens, W. J. Sutherland and R. P. Freckleton,
What is the Allee effect?, Oikos, 87 (1999), 185-190.
doi: 10.2307/3547011. |
[31] |
J. R. L. Webb and K. Q. Lan,
Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27 (2006), 91-115.
|
[32] |
A. Wintner,
On the non-existence of conjugate points, Amer. J. Math., 73 (1951), 368-380.
doi: 10.2307/2372182. |
[33] |
G. C. Yang and K. Q. Lan,
A fixed point index theory for nowhere normal-outward compact maps and applications, J. Appl. Anal. Comput., 6 (2016), 665-683.
|
[34] |
X. J. Yang,
On inequalities of Lyapunov type, Appl. Math. Comput., 134 (2003), 293-300.
doi: 10.1016/S0096-3003(01)00283-1. |
[35] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of even-order linear differential equations, Appl. Math. Comput., 245 (2014), 145-151.
doi: 10.1016/j.amc.2014.07.085. |
[36] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequalities for a class of higher-order linear differential equations, Appl. lett., 34 (2014), 86-89.
doi: 10.1016/j.aml.2013.11.001. |
[37] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of linear differential systems, Appl. Math. Comput., 219 (2012), 1805-1812.
doi: 10.1016/j.amc.2012.08.019. |
[38] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for quasilinear systems, Appl. Math. Comput., 219 (2012), 1670-1673.
doi: 10.1016/j.amc.2012.08.007. |
[39] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of quasilinear systems, Appl. Math. Model., 53 (2011), 1162-1166.
doi: 10.1016/j.mcm.2010.11.083. |
[40] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of odd-order differential equations, J. Comput. Appl. Math., 234 (2010), 2962-2968.
doi: 10.1016/j.cam.2010.04.008. |
[41] |
X. J. Yang and K. Lo,
New Lyapunov-type inequalities for a class of even-order linear differential equations, Math. Nach., 288 (2015), 1910-1915.
doi: 10.1002/mana.201400050. |
[42] |
X. J. Yang and K. Lo,
Lyapunov-type inequalities for a class of higher-order linear differential equations with anti-periodic boundary conditions, Appl. lett., 34 (2014), 33-36.
doi: 10.1016/j.aml.2014.03.009. |
[43] |
X. J. Yang and K. Lo,
Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890.
doi: 10.1016/j.amc.2009.11.032. |
show all references
References:
[1] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., bf 18 (1976), 620–709
doi: 10.1137/1018114. |
[2] |
J. F. Bonder, J. P. Pinasco and A. M. Salort,
A Lyapunoy type inequality for indefinite weights and eigenvalue homogenization, Proc. Amer. Math. Soc., 144 (2015), 1669-1680.
doi: 10.1090/proc/12871. |
[3] |
G. Borg, On a Lyapunov criterion of stability, Amer. J. Math., 71 (1949), 67-70. Google Scholar |
[4] |
R. C. Brown and D. B. Hinton,
Opial's inequality and oscillation of second-order equations, Proc. Amer. Math. Soc., 125 (1997), 1123-1129.
doi: 10.1090/S0002-9939-97-03907-5. |
[5] |
A. Canada, J. A. Montero and S. Villeges,
Lynapunov inequalities for partial differential equations, J. Funct. Anal., 237 (2006), 176-193.
doi: 10.1016/j.jfa.2005.12.011. |
[6] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318.
doi: 10.1017/S030821050001876X. |
[7] |
R. S. Cantrell and C. Cosner,
The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
doi: 10.1007/BF00167155. |
[8] |
R. S. Cantrell and C. Cosner,
Diffusive logistic equations with indefinite weigts: Population models in disrupted environments Ⅱ, SIAM J. Appl. Math., 22 (1991), 1043-1064.
doi: 10.1137/0522068. |
[9] |
A. M. Das and A. S. Vatsala,
Green function for n-n boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl., 51 (1975), 670-677.
doi: 10.1016/0022-247X(75)90117-1. |
[10] |
P. L. de Nápoli and J. P. Pinasco,
Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270 (2016), 1995-2018.
doi: 10.1016/j.jfa.2016.01.006. |
[11] |
P. L. de Nápoli and J. P. Pinasco,
A Lyapunov inequality for monotone quasilinear operators, Differential Integral Equations, 18 (2005), 1193-1200.
|
[12] |
W. Ding, H. Finotti, S. Lenhart, Y. Lou and Q. Ye,
Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Applications, 11 (2010), 688-704.
doi: 10.1016/j.nonrwa.2009.01.015. |
[13] |
R. A. C. Ferreira,
On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063.
doi: 10.1016/j.jmaa.2013.11.025. |
[14] |
A. M. Fink and D. F. St. Mary,
On an inequality of Nehari, Proc. Amer. Math. Soc., 21 (1969), 640-642.
doi: 10.1090/S0002-9939-1969-0240388-0. |
[15] |
C. Ha,
Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type, Proc. Amer. Math. Soc., 126 (1998), 3507-3511.
doi: 10.1090/S0002-9939-98-05010-2. |
[16] |
P. Hartman, Ordinary Differential Equations, Boston, 1982. |
[17] |
M. Hintermüller, C. Y. Kao and A. Laurain,
Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions, Appl. Math. Optim., 65 (2012), 111-146.
doi: 10.1007/s00245-011-9153-x. |
[18] |
D. B. Hinton,
A criterion for n-n oscillation in differential equations of order 2n, Proc. Amer. Math. Soc., 19 (1968), 511-518.
doi: 10.2307/2035825. |
[19] |
M. Jleli and B. Samet,
Lyapunov-type inequality for fractional boundary value problems, Electron. J. Differ. Eqn., (2015), 1-11.
|
[20] |
K. Q. Lan,
Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001), 690-704.
doi: 10.1112/S002461070100206X. |
[21] |
K. Q. Lan and W. Lin,
Population models with quasi-constant-yield harvest rates, Math. Biosci. Eng., 14 (2017), 467-490.
doi: 10.3934/mbe.2017029. |
[22] |
K. Q. Lan and J. R. L. Webb,
Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.
doi: 10.1006/jdeq.1998.3475. |
[23] |
K. Q. Lan and G. C. Yang,
Optimal constants for two point boundary value problems, Discrete Contin. Dyn. Syst. Suppl., (2007), 624-633.
|
[24] |
D. Ludwig, D. C. Aronson and H. F. Weinberger,
Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.
doi: 10.1007/BF00276310. |
[25] |
R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. |
[26] |
M. G. Neubert,
Marine reserves and optimal harvesting, Ecol. Lett., 6 (2003), 843-849.
doi: 10.1046/j.1461-0248.2003.00493.x. |
[27] |
L. Roques and M. D. Chekroun,
On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.
doi: 10.1137/060676994. |
[28] |
L. Roques and F. Hamel,
Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci., 210 (2007), 34-59.
doi: 10.1016/j.mbs.2007.05.007. |
[29] |
P. A. Stephens and W. J. Sutherland,
Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol., 14 (1999), 401-405.
doi: 10.1016/S0169-5347(99)01684-5. |
[30] |
P. A. Stephens, W. J. Sutherland and R. P. Freckleton,
What is the Allee effect?, Oikos, 87 (1999), 185-190.
doi: 10.2307/3547011. |
[31] |
J. R. L. Webb and K. Q. Lan,
Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27 (2006), 91-115.
|
[32] |
A. Wintner,
On the non-existence of conjugate points, Amer. J. Math., 73 (1951), 368-380.
doi: 10.2307/2372182. |
[33] |
G. C. Yang and K. Q. Lan,
A fixed point index theory for nowhere normal-outward compact maps and applications, J. Appl. Anal. Comput., 6 (2016), 665-683.
|
[34] |
X. J. Yang,
On inequalities of Lyapunov type, Appl. Math. Comput., 134 (2003), 293-300.
doi: 10.1016/S0096-3003(01)00283-1. |
[35] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of even-order linear differential equations, Appl. Math. Comput., 245 (2014), 145-151.
doi: 10.1016/j.amc.2014.07.085. |
[36] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequalities for a class of higher-order linear differential equations, Appl. lett., 34 (2014), 86-89.
doi: 10.1016/j.aml.2013.11.001. |
[37] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of linear differential systems, Appl. Math. Comput., 219 (2012), 1805-1812.
doi: 10.1016/j.amc.2012.08.019. |
[38] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for quasilinear systems, Appl. Math. Comput., 219 (2012), 1670-1673.
doi: 10.1016/j.amc.2012.08.007. |
[39] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of quasilinear systems, Appl. Math. Model., 53 (2011), 1162-1166.
doi: 10.1016/j.mcm.2010.11.083. |
[40] |
X. J. Yang, Y. Kim and K. Lo,
Lyapunov-type inequality for a class of odd-order differential equations, J. Comput. Appl. Math., 234 (2010), 2962-2968.
doi: 10.1016/j.cam.2010.04.008. |
[41] |
X. J. Yang and K. Lo,
New Lyapunov-type inequalities for a class of even-order linear differential equations, Math. Nach., 288 (2015), 1910-1915.
doi: 10.1002/mana.201400050. |
[42] |
X. J. Yang and K. Lo,
Lyapunov-type inequalities for a class of higher-order linear differential equations with anti-periodic boundary conditions, Appl. lett., 34 (2014), 33-36.
doi: 10.1016/j.aml.2014.03.009. |
[43] |
X. J. Yang and K. Lo,
Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890.
doi: 10.1016/j.amc.2009.11.032. |


[1] |
Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020168 |
[2] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[3] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[4] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[5] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[6] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[7] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[8] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[9] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[10] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[11] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[12] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[13] |
Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149 |
[14] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[15] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[16] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[17] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[18] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[19] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[20] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]