In this paper we study the time evolution of a temperature patch in $\mathbb{R}^2$ according to the modified Surface Quasi-Geostrophic (SQG) patch equation. In particular we give a temporal estimate on the growth of the support, providing a rigorous proof of the confinement of a hot patch of temperature in absence of external forcing, under the quasi-geostrophic approximation.
Citation: |
C. Bucur
and A. L. Karakhanyan
, Potential theoretic approach to Schauder estimates for the fractional Laplacian, Proceedings of the American Mathematical Society, 145 (2017)
, 637-651.
doi: 10.1090/proc/13227.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
G. Cavallaro
, R. Garra
and C. Marchioro
, Localization and stability of active scalar flows, Riv. Mat. Univ. Parma, 4 (2013)
, 175-196.
![]() ![]() |
|
D. Chae
, P. Constantin
and J. Wu
, Inviscid models generalizing the two-dimensional Euler and the Surface Quasi-geostrophic equations, Arch. Rational Mech. Anal., 202 (2011)
, 35-62.
doi: 10.1007/s00205-011-0411-5.![]() ![]() ![]() |
|
P. Constantin
, D. Cordoba
and J. Wu
, On the Critical Dissipative Quasi-geostrophic Equation, Indiana University mathematics journal, 50 (2001)
, 97-107.
doi: 10.1512/iumj.2008.57.3629.![]() ![]() ![]() |
|
P. Constantin
, A. J. Majda
and E. Tabak
, Formation of strong fronts in the 2-d quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994)
, 1495-1533.
![]() ![]() |
|
A. Cordoba
, D. Cordoba
and F. Gancedo
, Uniqueness for SQG patch solutions, Transactions of the American Mathematical Society, Series B, 5 (2018)
, 1-31.
doi: 10.1090/btran/20.![]() ![]() ![]() |
|
D. Cordoba
, M. A. Fontelos
, A. M. Mancho
and J. L. Rodrigo
, Evidence of singularities for a family of contour dynamics equations, Proceedings of the National Academy of Sciences, 102 (2005)
, 5949-5952.
doi: 10.1073/pnas.0501977102.![]() ![]() ![]() |
|
F. Gancedo
, Existence for the alpha-patch model and the QG sharp front in Sobolev spaces, Advances in Mathematics, 217 (2008)
, 2569-2598.
doi: 10.1016/j.aim.2007.10.010.![]() ![]() ![]() |
|
I. M. Held
, R. T. Pierrehumbert
, S. T. Garner
and K. L. Swanson
, Surface quasi-geostrophic dynamics, J. Fluid Mech., 282 (1995)
, 1-20.
doi: 10.1017/S0022112095000012.![]() ![]() ![]() |
|
D. Iftimie
, T. C. Sideris
and P. Gamblin
, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations, 24 (1999)
, 1709-1730.
![]() ![]() |
|
D. Iftimie, Evolution de Tourbillon à Support Compact, Actes du Colloque de Saint-Jean-de-Monts, 1999.
![]() ![]() |
|
T. Iwayama and T. Watanabe, Green's function for a generalized two-dimensional fluid, Physical Review E, 82 (2010), 036307.
![]() |
|
A. Kiselev, L. Ryzhik, Y. Yao and A. Zlatos, Finite time singularity formation for the modified SQG patch equation, Ann. of Math. (2), 184 (2016), 909–948, arXiv:1508.07613.
doi: 10.4007/annals.2016.184.3.7.![]() ![]() ![]() |
|
D. Li
, Existence theorems for the 2D quasi-geostrophic equation with plane wave initial conditions, Nonlinearity, 22 (2009)
, 1639-1651.
doi: 10.1088/0951-7715/22/7/008.![]() ![]() ![]() |
|
A. J. Majda
and E. Tabak
, A two-dimensional model for quasi-geostrophic flow: comparison with the two-dimensional Euler flow, Physica D, 98 (1996)
, 515-522.
doi: 10.1016/0167-2789(96)00114-5.![]() ![]() ![]() |
|
A. Mancho
, Numerical studies on the self-similar collapse of the alpha-patches problem, Communications in Nonlinear Science and Numerical Simulation, 26 (2015)
, 152-166.
doi: 10.1016/j.cnsns.2015.02.009.![]() ![]() ![]() |
|
C. Marchioro
, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys., 164 (1994)
, 507-524.
![]() ![]() |
|
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, 1987.
![]() |
|
R. T. Pierrehumbert
, I. M. Held
and K. L. Swanson
, Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons and Fractals, 4 (1994)
, 1111-1116.
![]() |
|
J. L. Rodrigo
, On the evolution of sharp Fronts for the Quasi-Geostrophic equation, Commun. Pure and Appl. Math., 58 (2005)
, 821-866.
doi: 10.1002/cpa.20059.![]() ![]() ![]() |
|
P. Serfati, Borne en temps des caractéristiques de l'équation d'Euler 2D á tourbillon positif et localisation pour le modéle point-vortex, Preprint.
![]() |