\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global eradication for spatially structured populations by regional control

  • * Corresponding author: Vincenzo Capasso

    * Corresponding author: Vincenzo Capasso 
Abstract / Introduction Full Text(HTML) Figure(3) Related Papers Cited by
  • This paper concerns problems for the eradication of apopulation by acting on a subregion ω. The dynamics isdescribed by a general reaction-diffusion system, including one ormore populations, subject to a vital dynamics with either locallogistic or nonlocal logistic terms. For the one populationcase, a necessary condition and a sufficient condition foreradicability (zero-stabilizability) are obtained, in terms of the sign of the principaleigenvalue of a suitable elliptic operator acting on the domain$Ω \setminus \overline{ω }$. A feedbackharvesting-like control with a large constant harvesting raterealizes eradication of the population. The problem oferadication is then reformulated in a more convenient way, bytaking into account the total cost of the damages produced by apest population and the costs related to the choice of therelevant subregion, and approximated by a regional optimalcontrol problem with a finite horizon. A conceptual iterativealgorithm is formulated for the simulation of the proposedoptimal control problem. Numerical tests are given to illustratethe effectiveness of the results. Relevant regional controlproblems for two populations reaction-diffusion models, such asprey-predator system, and an SIR epidemic system with spatialstructure and local/nonlocal force of infection, have beenanalyzed too.

    Mathematics Subject Classification: Primary: 49K20, 49Q10, 92D25, 93C20, 93B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The representation of final iteration of $\omega$ for $\alpha \in \{5,6,7,8,9,10\}$ and $\beta = 0$

    Figure 2.  The representation of final iteration of $\omega$ for $\alpha \in \{0.2, 0.3, 0.4, 0.45, 0.5\}$ and $\beta = 0.3$

    Figure 3.  The representation of initial and final iterations of $\omega$ for $\alpha \in \{0.5, 1, 2.5\}$ and $\beta = 0.001$

  • [1] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Acad. Publ., Dordrecht, 2000. doi: 10.1007/978-94-015-9436-3.
    [2] S. Aniţa, V. Arnăutu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, Basel, 2011. doi: 10.1007/978-0-8176-8098-5.
    [3] S. Aniţa and V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlin. Anal. Real World Appl., 3 (2002), 453-464.  doi: 10.1016/S1468-1218(01)00025-6.
    [4] S. Aniţa and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlin. Anal. Real World Appl, 10 (2009), 2026-2035.  doi: 10.1016/j.nonrwa.2008.03.009.
    [5] S. Aniţa and V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Math. Meth. Appl. Sci., 33 (2010), 1235-1244.  doi: 10.1002/mma.1267.
    [6] S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlin. Anal. Real World Appl., 13 (2012), 725-735.  doi: 10.1016/j.nonrwa.2011.08.012.
    [7] S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete Cont. Dynam. Syst., Series B, 17 (2012), 1673-1684.  doi: 10.3934/dcdsb.2012.17.1673.
    [8] S. AniţaV. Capasso and A.-M. Moşneagu, Regional control in optimal harvesting problems of population dynamics, Nonlin. Anal., 147 (2016), 191-212.  doi: 10.1016/j.na.2016.09.008.
    [9] S. AniţaW.-E. Fitzgibbon and M. Langlais, Global existence and internal stabilization for a class of predator-prey systems posed on non coincident spatial domains, Discrete Cont. Dyn. Sys., Series B, 11 (2009), 805-822.  doi: 10.3934/dcdsb.2009.11.805.
    [10] V. Arnăutu and P. Neittaanmäki, Optimal Control from Theory to Computer Programs, Kluwer Acad. Publ., Dordrecht, 2003. doi: 10.1007/978-94-017-2488-3.
    [11] D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion (W.E. Fitzgibbon, A.F. Walker, Eds.), Pitman, London, 1977.
    [12] V. Barbu, Partial Differention Equations and Boundary Value Problems, Kluwer Acad. Publ., Dordrecht, 1998. doi: 10.1007/978-94-015-9117-1.
    [13] A. O. Belyakov and V. M. Veliov, On optimal harvesting in age-structured populations, in Dynamic Perspectives on Managerial Decision Making (H. Dawid, K.F. Doerner, G. Feichtinger, P.M. Kort, A. Seidl, Eds.), Springer Internat. Publ., 22 (2016), 1186-1202.  doi: 10.1007/978-3-319-39120-5_9.
    [14] A. BressanG. M. Coclite and W. Shen, A multidimensional optimal-harvesting problem with measure-valued solutions, SIAM J. Control Optim., 51 (2013), 1186-1202.  doi: 10.1137/110853510.
    [15] D. Bucur and G. Buttazzo, Variational Methods in Some Shape Optimization Problems, Notes of Courses Given by the Teachers at the School, Scuola Normale Superiore, Pisa, 2002.
    [16] V. Capasso, Mathematical Structures of Epidemic Systems(corrected 2nd printing), Lecture Notes in Biomathematics, Vol. 97, Springer-Verlag, Heidelberg, 2008.
    [17] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Process, 10 (2001), 266-277.  doi: 10.1109/83.902291.
    [18] G. M. Coclite and M. Garavello, A time dependent optimal harvesting problem with measure valued solutions, SIAM J. Control Optim, 55 (2017), 913-935.  doi: 10.1137/16M1061886.
    [19] G. M. CocliteM. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 865-900.  doi: 10.3934/dcdss.2018053.
    [20] M.C. Delfour and J.-P. Zolesio, Shapes and Geometries. Metrics, Analysis, Differential Calculus and Optimization. Second Edition, SIAM, Philadelphia, 2011. doi: 10.1137/1.9780898719826.
    [21] K. R. Fister and S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1-15.  doi: 10.1007/s00245-005-0847-9.
    [22] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964.
    [23] S. GenieysV. Volpert and P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom., 1 (2006), 65-82.  doi: 10.1051/mmnp:2006004.
    [24] P. Getreuer, Chan-Vese Segmentation, IPOL J. Image Process, Online, 2 (2012), 214-224.  doi: 10.5201/ipol.2012.g-cv.
    [25] A. Henrot and M. Pierre, Variation et Optimisation de Formes, Mathématiques et Applications, Springer-Verlag, Berlin, 2005. doi: 10.1007/3-540-37689-5.
    [26] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia, 1975.
    [27] N. Hritonenko and Y. Yatsenko, Optimization of harvesting age in integral age-dependent model of population dynamics, Math. Biosci., 195 (2005), 154-167.  doi: 10.1016/j.mbs.2005.03.001.
    [28] D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H.M.S.O., London, (1965), 213-225. 
    [29] S. Lenhart, Using optimal control of parabolic PDEs to investigate population questions, NIMBioS, April 9-11, 2014; https://www.fields.utoronto.ca/programs/scientific/13-14/ BIOMAT/presentations/lenhartToronto3.pdf.
    [30] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall, 2007.
    [31] Z. Luo, Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl. Math. Comput., 186 (2007), 1742-1752.  doi: 10.1016/j.amc.2006.08.168.
    [32] Z. LuoW. T. Li and M. Wang, Optimal harvesting control problem for linear periodic age-dependent population dynamics, Appl. Math. Comput., 151 (2004), 789-800.  doi: 10.1016/S0096-3003(03)00536-8.
    [33] J. Ohser and F. Mücklich, Statistical Analysis of Microstructures in Materials Science. Statistics in Practice, John Wiley & Sons, New York, 2000.
    [34] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2003. doi: 10.1007/b98879.
    [35] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.
    [36] J. A. Sethian, Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Univ. Press, Cambridge, 1999.
    [37] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(2408) PDF downloads(290) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return