In this paper, a predator-prey model with age structure, stocking rate and two delays is investigated. We show that Hopf bifurcation occurs when one of the time delay $τ$ crosses a sequence of critical values, by applyingHopf bifurcation theory for abstract Cauchy problems with non-dense domain. Numerical simulations are included to verify our results and a summary is also given.
Citation: |
[1] |
M. Adimy, H. Bouzahir and K. Ezzinbi, Existence for a class of partial functional differential equations with infinite delay, Non. Anal., 46 (2001), 91-112.
doi: 10.1016/S0362-546X(99)00447-2.![]() ![]() ![]() |
[2] |
M. Adimy and K. Ezzinbi, A class of linear partial neutral functional differential equations with nondense domain, J. Diff. Equ., 147 (1998), 285-332.
doi: 10.1006/jdeq.1998.3446.![]() ![]() ![]() |
[3] |
J. Cao and R. Yuan, Bifurcation analysis in a modified Lesile-Gower model with Holling type Ⅱ functional response and delay, Nonl. Dyn., 84 (2016), 1341-1352.
doi: 10.1007/s11071-015-2572-5.![]() ![]() ![]() |
[4] |
S. Chen, J. Shi and J. Wei, Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems, J. Non. Sci., 23 (2013), 1-38.
doi: 10.1007/s00332-012-9138-1.![]() ![]() ![]() |
[5] |
J. Chu, Z. Liu, P. Magal and S. Ruan, Normal form for an age structured model, J. Dyn. Diff. Equ., 28 (2016), 733-761.
doi: 10.1007/s10884-015-9500-8.![]() ![]() ![]() |
[6] |
J. M. Cushing and M. Saleem, A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250.
doi: 10.1007/BF01832847.![]() ![]() ![]() |
[7] |
Y. Du and Y. Lou, S-Shaped Global Bifurcation Curve and Hopf Bifurcation of Positive Solutions to a Predator-Prey Model, J. Diff. Equ., 144 (1998), 390-440.
doi: 10.1006/jdeq.1997.3394.![]() ![]() ![]() |
[8] |
A. Ducrot, Z. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518.
doi: 10.1016/j.jmaa.2007.09.074.![]() ![]() ![]() |
[9] |
A. Ducrot, P. Magal and S. Ruan, Projectors on the generalized eigenspaces for partial differential equations with time delay, Inf. Dimens. Dyn. Syst., 64 (2013), 353-390.
doi: 10.1007/978-1-4614-4523-4_14.![]() ![]() ![]() |
[10] |
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs CNR, 7, Giadini Editori e Stampatori, Pisa, 1994.
![]() |
[11] |
S. Jitsuro, K. Rie and M. Rinko, On a predator prey system of Holling type, Proc. Ameri. Math. Soc., 125 (1997), 2041-2050.
doi: 10.1090/S0002-9939-97-03901-4.![]() ![]() ![]() |
[12] |
H. Kellerman and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160-180.
doi: 10.1016/0022-1236(89)90116-X.![]() ![]() ![]() |
[13] |
Z. Liu and N. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Non. Sci., 25 (2015), 937-957.
doi: 10.1007/s00332-015-9245-x.![]() ![]() ![]() |
[14] |
Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222.
doi: 10.1007/s00033-010-0088-x.![]() ![]() ![]() |
[15] |
Z. Liu, P. Magal and S. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Diff. Equ., 257 (2014), 921-1011.
doi: 10.1016/j.jde.2014.04.018.![]() ![]() ![]() |
[16] |
Z. Liu, P. Magal and S. Ruan, Oscillations in age-structured models of consumer-resource mutualisms, Dis. Cont. Dyn. Syst., 21 (2016), 537-555.
doi: 10.3934/dcdsb.2016.21.537.![]() ![]() ![]() |
[17] |
Z. Liu and R. Yuan, Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate, Science China, 60 (2017), 1371-1398.
doi: 10.1007/s11425-016-0371-8.![]() ![]() ![]() |
[18] |
P. Magal and S. Ruan, On integrated semigroups and age structured models in Lp spaces, Diff. Integ. Equ., 20 (2007), 197-239.
![]() ![]() |
[19] |
P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differ. Equ., 14 (2009), 1041-1084.
![]() ![]() |
[20] |
P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and apllications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009), ⅵ+71 pp.
doi: 10.1090/S0065-9266-09-00568-7.![]() ![]() ![]() |
[21] |
P. Magal and S. Ruan, Sustained oscillations in an evolutionary epidemiological model of influenza: A drift, Proc. R. Soc. A, 466 (2010), 965-992.
doi: 10.1098/rspa.2009.0435.![]() ![]() ![]() |
[22] |
P. Magal and H. R. Thieme, Eventual compactness for a semiflow generated by nonlinear an age-structured models, Commun. Pure Appl. Anal., 3 (2004), 695-727.
doi: 10.3934/cpaa.2004.3.695.![]() ![]() ![]() |
[23] |
J. Murray, Mathematical Biology I: An Introduction, Springer, 2002.
![]() ![]() |
[24] |
Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21.
doi: 10.1016/j.jmaa.2004.06.056.![]() ![]() ![]() |
[25] |
Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection, J. Math. Biol., 63 (2011), 557-574.
doi: 10.1007/s00285-010-0381-5.![]() ![]() ![]() |
[26] |
H. Tang and Z. Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40 (2016), 726-737.
doi: 10.1016/j.apm.2015.09.015.![]() ![]() ![]() |
[27] |
H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Ana. Appl., 152 (1990), 416-447.
doi: 10.1016/0022-247X(90)90074-P.![]() ![]() ![]() |
[28] |
H. R. Thieme, Semiflows generated by Lipschitz perturbations of none-densely defined operators, Diff. Integ. Equ., 3 (1990), 1035-1066.
![]() ![]() |
[29] |
H. R. Thieme, Quasi-compact semigroups via bounded perturbation, Advances in Mathematical Population Dynamics: Molecules, Cells and Man, World Scientific Publishing, River Edge, 6 (1997), 691-711.
![]() ![]() |
[30] |
Z. Wang and Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150.
doi: 10.1016/j.jmaa.2011.07.038.![]() ![]() ![]() |
[31] |
W. Wang, G. Mulone, F. Salemi and V. Salone, Permanence and Stability of a Stage-Structured Predator-Prey Model, J. Math. Anal. Appl., 262 (2001), 499-528.
doi: 10.1006/jmaa.2001.7543.![]() ![]() ![]() |
[32] |
J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Diff. Equ., 251 (2011), 1276-1304.
doi: 10.1016/j.jde.2011.03.004.![]() ![]() ![]() |
[33] |
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, New York N., 1985
![]() ![]() |
[34] |
D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.
doi: 10.1007/s002850100097.![]() ![]() ![]() |
[35] |
D. Yan, Y. Cao and X. Fu, Asymptotic analysis of a size-structured cannibalism population model with delayed birth process, Disc. Cont. Dyn. Syst. B, 21 (2017), 1975-1998.
doi: 10.3934/dcdsb.2016032.![]() ![]() ![]() |
[36] |
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Equ., 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024.![]() ![]() ![]() |
[37] |
T. Zhao, Y. Kuang and H. Smith, Global exisnece of periodic solutions in a class of delayed Gause-type predator-prey systems, Non. Anal., 28 (1997), 1373-1394.
doi: 10.1016/0362-546X(95)00230-S.![]() ![]() ![]() |
[38] |
G. Zhu and J. Wei, Global stability and bifurcation analysis of a delayed predator-prey system with prey immigration, Elect. J. Diff. Equ., 13 (2016), Paper No. 13, 20 pp.
![]() ![]() |
A solution of (1) that tends to the positive steady states when
For