We study the long-time behaviour of a population structured by age and a phenotypic trait under a selection-mutation dynamics. By analysing spectral properties of a family of positive operators on measure spaces, we show the existence of eventually singular stationary solutions. When the stationary measures are absolutely continuous with a continuous density, we show the convergence of the dynamics to the unique equilibrium.
Citation: |
A. S. Ackleh
, J. Cleveland
and H. R. Thieme
, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, Journal of Differential Equations, 261 (2016)
, 1472-1505.
doi: 10.1016/j.jde.2016.04.008.![]() ![]() ![]() |
|
O. Bonnefon
, J. Coville
and G. Legendre
, Concentration phenomenon in some non-local equation, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017)
, 763-781.
doi: 10.3934/dcdsb.2017037.![]() ![]() ![]() |
|
F. E. Browder
, On the spectral theory of elliptic differential operators. I, Mathematische Annalen, 142 (1960)
, 22-130.
doi: 10.1007/BF01343363.![]() ![]() ![]() |
|
R. Bürger
, Perturbations of positive semigroups and applications to population genetics, Mathematische Zeitschrift, 197 (1988)
, 259-272.
doi: 10.1007/BF01215194.![]() ![]() ![]() |
|
L. Burlando
, Monotonicity of spectral radius for positive operators on ordered Banach spaces, Archiv der Mathematik, 56 (1991)
, 49-57.
doi: 10.1007/BF01190081.![]() ![]() ![]() |
|
A. Calsina
and J. M. Palmada
, Steady states of a selection-mutation model for an age structured population, Journal of Mathematical Analysis and Applications, 400 (2013)
, 386-395.
doi: 10.1016/j.jmaa.2012.11.042.![]() ![]() ![]() |
|
J. Cañizo
, J. A. Carrillo
and S. Cuadrado
, Measure solutions for some models in population dynamics, Acta Applicandae Mathematicae, 123 (2013)
, 141-156.
doi: 10.1007/s10440-012-9758-3.![]() ![]() ![]() |
|
J. Coville
, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, Journal of Differential Equations, 249 (2010)
, 2921-2953.
doi: 10.1016/j.jde.2010.07.003.![]() ![]() ![]() |
|
J. Coville
, J. Davila
and S. Martinez
, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013)
, 179-223.
doi: 10.1016/j.anihpc.2012.07.005.![]() ![]() ![]() |
|
J. Coville
, Singular measure as principal eigenfunction of some nonlocal operators, Applied Mathematics Letters, 26 (2013)
, 831-835.
doi: 10.1016/j.aml.2013.03.005.![]() ![]() ![]() |
|
D. Dawson
, Measure-valued Markov processes, École d'été de Probabilités de Saint-Flour XXI-1991, 1541 (1993)
, 1-260.
doi: 10.1007/BFb0084190.![]() ![]() ![]() |
|
L. Desvillettes
, P. E. Jabin
, S. Mischler
and G. Raoul
, On selection dynamics for continuous structured populations, Communications in Mathematical Sciences, 6 (2008)
, 729-747.
doi: 10.4310/CMS.2008.v6.n3.a10.![]() ![]() ![]() |
|
H. Von Foerster,
Some Remarks on Changing Populations, Grune and Stratton, 1959.
![]() |
|
N. Gao
, Extensions of Perron-Frobenius theory, Positivity, 56 (2013)
, 965-977.
doi: 10.1007/s11117-012-0215-3.![]() ![]() ![]() |
|
E. M. Gurtin
and R. MacCamy
, Non-linear age-dependent population dynamics, Archive for Rational Mechanics and Analysis, 54 (1974)
, 281-300.
doi: 10.1007/BF00250793.![]() ![]() ![]() |
|
P. Gwiazda
and E. Wiedemann
, Generalized entropy method for the renewal equation with measure data, Commun. Math. Sci., 15 (2017)
, 577-586.
doi: 10.4310/CMS.2017.v15.n2.a13.![]() ![]() ![]() |
|
M. Iannelli and F. Milner,
The Basic Approach to Age-Structured Population Dynamics: Models, Methods and Numerics, Springer, 2017.
![]() |
|
P. Jagers
and F. Klebaner
, Population-size-dependent and age-dependent branching processes, Stochastic Processes and their Applications, 87 (2000)
, 235-254.
doi: 10.1016/S0304-4149(99)00111-8.![]() ![]() ![]() |
|
T. Kato,
Perturbation Theory for Linear Operators, Springer Science & Business Media, 2013.
![]() |
|
M. G. Krein
and M. A. Rutman
, Population-size-dependent and age-dependent branching processes, Uspekhi Matematicheskikh Nauk, 3 (1948)
, 3-95.
![]() ![]() |
|
J. Kristensen
and F. Rindler
, Relaxation of signed integral functionals in BV, Calculus of Variations and Partial Differential Equations, 37 (2010)
, 29-62.
doi: 10.1007/s00526-009-0250-5.![]() ![]() ![]() |
|
H. Leman
, S. Meleard
and S. Mirrahimi
, Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 469-493.
doi: 10.3934/dcdsb.2015.20.469.![]() ![]() ![]() |
|
J. A. Metz and O. Diekmann,
The Dynamics of Physiologically Structured Populations, Springer, 2014.
![]() |
|
P. Michel
, S. Mischler
and B. Perthame
, General relative entropy inequality: An illustration on growth models, Journal de Mathématiques Pures Et Appliquées, 84 (2005)
, 1235-1260.
doi: 10.1016/j.matpur.2005.04.001.![]() ![]() ![]() |
|
S. Nordmann
, B. Perthame
and C. Taing
, Dynamics of concentration in a population model structured by age and a phenotypical trait, Acta Applicandae Mathematicae, 155 (2018)
, 197-225.
doi: 10.1007/s10440-017-0151-0.![]() ![]() ![]() |
|
B. Perthame,
Transport Equations in Biology, Springer Science & Business Media, 2006.
![]() |
|
B. Perthame
and S. K. Tumuluri
, Nonlinear renewal equations, Selected Topics in Cancer Modeling, (2008)
, 65-96.
![]() ![]() |
|
S. T. Rachev,
Probability Metrics and Stability of Stochastic Processes, Wiley, 1991.
![]() |
|
H. Schaefer and M. P. Wolff,
Topological Vector Spaces, Graduate Texts in Mathematics, 1971.
![]() |
|
D. Spector
, Simple proofs of some results of Reshetnyak, Proceedings of the American Mathematical Society, 139 (2011)
, 1681-1690.
doi: 10.1090/S0002-9939-2010-10593-2.![]() ![]() ![]() |
|
C. V. Tran,
Modèles Particulaires Stochastiques Pour des Problèmes d'évolution Adaptative et Pour L'approximation de Solutions Statistiques, Université de Nanterre-Paris X, PhD, (2006).
![]() |
|
C. V. Tran
, Large population limit and time behaviour of a stochastic particle model describing an age-structured population, ESAIM: Probability and Statistics, 12 (2008)
, 345-386.
doi: 10.1051/ps:2007052.![]() ![]() ![]() |
|
C. Villani,
Topics in Optimal Transportation, American Mathematical Soc., 2003.
![]() |