\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space

  • * Corresponding author: Ruyun Ma

    * Corresponding author: Ruyun Ma 

The first author is supported by NSF grant NSFC (No.11671322)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper we study global bifurcation phenomena for the Dirichlet problem associated with the prescribed mean curvature equation in Minkowski space

    $\left\{ \begin{array}{l} -\text{div}\big(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\big) = λ f(x,u,\nabla u)\ \ \ \ \ \ & \text{in}\ Ω,\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ & \text{on}\ \partial Ω.\\\end{array} \right.$

    Here $Ω$ is a bounded regular domain in $\mathbb{R}^N$ , the function $f$ satisfies the Carathéodory conditions, and $f$ is either superlinear or sublinear in $u$ at $0$ . The proof of our main results are based upon bifurcation techniques.

    Mathematics Subject Classification: Primary: 35J25; Secondary: 47H11, 47J10, 34B18.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Bartnik  and  L. Simon , Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982/83) , 131-152. 
      C. Bereanu , P. Jebelean  and  J. Mawhin , The Dirichlet problem with mean curvature operator in Minkowski space-A variational approach, Adv. Nonlinear Stud., 14 (2014) , 315-326.  doi: 10.1515/ans-2014-0204.
      C. Bereanu , P. Jebelean  and  P. J. Torres , Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013) , 644-659.  doi: 10.1016/j.jfa.2013.04.006.
      C. Bereanu , P. Jebelean  and  P. J. Torres , Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal., 264 (2013) , 270-287.  doi: 10.1016/j.jfa.2012.10.010.
      K. J. Brown  and  S. S. Lin , On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980) , 112-120.  doi: 10.1016/0022-247X(80)90309-1.
      G. Chen, Introduction to Sobelev Spaces, Science press, Beijing, 2013.
      S. Y. Cheng  and  S. T. Yau , Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104 (1976) , 407-419.  doi: 10.2307/1970963.
      S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Fundamental Principles of Mathematical Science, 251, Springer-Verlag, New York-Berlin, 1982.
      I. Coelho , C. Corsato , F. Obersnel  and  P. Omari , Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012) , 621-638.  doi: 10.1515/ans-2012-0310.
      I. Coelho , C. Corsato  and  S. Rivetti , Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal., 44 (2014) , 23-39.  doi: 10.12775/TMNA.2014.034.
      C. Corsato , F. Obersnel  and  P. Omari , The Dirichlet problem for gradient dependent prescribed mean curvature equations in the Lorentz-Minkowski space, Georgian Math. J., 24 (2017) , 113-134.  doi: 10.1515/gmj-2016-0078.
      C. Corsato , F. Obersnel , P. Omari  and  S. Rivetti , On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space, Discrete Contin. Dyn. Syst. Suppl., 2013 (2013) , 159-169.  doi: 10.3934/proc.2013.2013.159.
      C. Corsato , F. Obersnel , P. Omari  and  S. Rivetti , Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 405 (2013) , 227-239.  doi: 10.1016/j.jmaa.2013.04.003.
      C. Gerhardt , H-surfaces in Lorentzian manifolds, Comm. Math. Phys., 89 (1983) , 523-553. 
      P. Hess  and  T. Kato , On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5 (1980) , 999-1030.  doi: 10.1080/03605308008820162.
      H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to PDEs, 156, Applied Mathematical Sciences, Springer-Verlag, New York, 2004.
      G. M. Lieberman , Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988) , 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.
      R. Ma  and  Y. An , Global structure of positive solutions for superlinear second order $m$-point boundary value problems, Topol. Methods Nonlinear Anal., 34 (2009) , 279-290.  doi: 10.12775/TMNA.2009.043.
      R. Ma  and  Y. An , Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009) , 4364-4376.  doi: 10.1016/j.na.2009.02.113.
      R. Ma , H. Gao  and  Y. Lu , Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 270 (2016) , 2430-2455.  doi: 10.1016/j.jfa.2016.01.020.
      P. H. Rabinowitz , Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971) , 487-513.  doi: 10.1016/0022-1236(71)90030-9.
      A. Treibergs , Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66 (1982) , 39-56.  doi: 10.1007/BF01404755.
      G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.
      E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-point Theorems, Translated from the German by Peter R. Wadsack., Springer-Verlag, New York, 1986.
  • 加载中
SHARE

Article Metrics

HTML views(2241) PDF downloads(277) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return