In this paper we study global bifurcation phenomena for the Dirichlet problem associated with the prescribed mean curvature equation in Minkowski space
$\left\{ \begin{array}{l} -\text{div}\big(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\big) = λ f(x,u,\nabla u)\ \ \ \ \ \ & \text{in}\ Ω,\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ & \text{on}\ \partial Ω.\\\end{array} \right.$
Here $Ω$ is a bounded regular domain in $\mathbb{R}^N$ , the function $f$ satisfies the Carathéodory conditions, and $f$ is either superlinear or sublinear in $u$ at $0$ . The proof of our main results are based upon bifurcation techniques.
Citation: |
R. Bartnik
and L. Simon
, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982/83)
, 131-152.
![]() ![]() |
|
C. Bereanu
, P. Jebelean
and J. Mawhin
, The Dirichlet problem with mean curvature operator in Minkowski space-A variational approach, Adv. Nonlinear Stud., 14 (2014)
, 315-326.
doi: 10.1515/ans-2014-0204.![]() ![]() ![]() |
|
C. Bereanu
, P. Jebelean
and P. J. Torres
, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013)
, 644-659.
doi: 10.1016/j.jfa.2013.04.006.![]() ![]() ![]() |
|
C. Bereanu
, P. Jebelean
and P. J. Torres
, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal., 264 (2013)
, 270-287.
doi: 10.1016/j.jfa.2012.10.010.![]() ![]() ![]() |
|
K. J. Brown
and S. S. Lin
, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980)
, 112-120.
doi: 10.1016/0022-247X(80)90309-1.![]() ![]() ![]() |
|
G. Chen, Introduction to Sobelev Spaces, Science press, Beijing, 2013.
![]() |
|
S. Y. Cheng
and S. T. Yau
, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104 (1976)
, 407-419.
doi: 10.2307/1970963.![]() ![]() ![]() |
|
S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Fundamental Principles of Mathematical Science, 251, Springer-Verlag, New York-Berlin, 1982.
![]() |
|
I. Coelho
, C. Corsato
, F. Obersnel
and P. Omari
, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012)
, 621-638.
doi: 10.1515/ans-2012-0310.![]() ![]() ![]() |
|
I. Coelho
, C. Corsato
and S. Rivetti
, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal., 44 (2014)
, 23-39.
doi: 10.12775/TMNA.2014.034.![]() ![]() ![]() |
|
C. Corsato
, F. Obersnel
and P. Omari
, The Dirichlet problem for gradient dependent prescribed mean curvature equations in the Lorentz-Minkowski space, Georgian Math. J., 24 (2017)
, 113-134.
doi: 10.1515/gmj-2016-0078.![]() ![]() ![]() |
|
C. Corsato
, F. Obersnel
, P. Omari
and S. Rivetti
, On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space, Discrete Contin. Dyn. Syst. Suppl., 2013 (2013)
, 159-169.
doi: 10.3934/proc.2013.2013.159.![]() ![]() ![]() |
|
C. Corsato
, F. Obersnel
, P. Omari
and S. Rivetti
, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 405 (2013)
, 227-239.
doi: 10.1016/j.jmaa.2013.04.003.![]() ![]() ![]() |
|
C. Gerhardt
, H-surfaces in Lorentzian manifolds, Comm. Math. Phys., 89 (1983)
, 523-553.
![]() ![]() |
|
P. Hess
and T. Kato
, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations, 5 (1980)
, 999-1030.
doi: 10.1080/03605308008820162.![]() ![]() ![]() |
|
H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to PDEs, 156, Applied Mathematical Sciences, Springer-Verlag, New York, 2004.
![]() |
|
G. M. Lieberman
, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988)
, 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
|
R. Ma
and Y. An
, Global structure of positive solutions for superlinear second order $m$-point boundary value problems, Topol. Methods Nonlinear Anal., 34 (2009)
, 279-290.
doi: 10.12775/TMNA.2009.043.![]() ![]() ![]() |
|
R. Ma
and Y. An
, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009)
, 4364-4376.
doi: 10.1016/j.na.2009.02.113.![]() ![]() ![]() |
|
R. Ma
, H. Gao
and Y. Lu
, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 270 (2016)
, 2430-2455.
doi: 10.1016/j.jfa.2016.01.020.![]() ![]() ![]() |
|
P. H. Rabinowitz
, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971)
, 487-513.
doi: 10.1016/0022-1236(71)90030-9.![]() ![]() ![]() |
|
A. Treibergs
, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66 (1982)
, 39-56.
doi: 10.1007/BF01404755.![]() ![]() ![]() |
|
G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958.
![]() |
|
E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-point Theorems, Translated from the German by Peter R. Wadsack., Springer-Verlag, New York, 1986.
![]() |