• Previous Article
    H2-stability of some second order fully discrete schemes for the Navier-Stokes equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space
June  2019, 24(6): 2719-2743. doi: 10.3934/dcdsb.2018272

Long time behavior of fractional impulsive stochastic differential equations with infinite delay

1. 

School of Mathematics and Statistics, Xi’an Jiaotong University Xi’an 710049, China

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain

Received  March 2018 Revised  May 2018 Published  October 2018

Fund Project: This work has been supported by grant MTM2015-63723-P (MINECO/FEDER, EU) and Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314, and Proyecto de Excelencia P12-FQM-1492.

This paper is first devoted to the local and global existence of mild solutions for a class of fractional impulsive stochastic differential equations with infinite delay driven by both $\mathbb{K}$-valued Q-cylindrical Brownian motion and fractional Brownian motion with Hurst parameter $H∈(1/2,1)$. A general framework which provides an effective way to prove the continuous dependence of mild solutions on initial value is established under some appropriate assumptions. Furthermore, it is also proved the exponential decay to zero of solutions to fractional stochastic impulsive differential equations with infinite delay.

Citation: Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272
References:
[1]

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.  doi: 10.1016/j.na.2007.10.004.  Google Scholar

[2]

D. BahugunaR. Sakthivel and A. Chadha, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stoch. Anal. Appl., 35 (2017), 63-88.  doi: 10.1080/07362994.2016.1249285.  Google Scholar

[3]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001.  Google Scholar

[4]

M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, 2006. doi: 10.1155/9789775945501.  Google Scholar

[5]

T. BlouhiT. Caraballo and A. Ouahab, Existence and stability results for semilinear systems of impulsive stochastic differential equations with fractional Brownian motion, Stoch. Anal. Appl., 34 (2016), 792-834.  doi: 10.1080/07362994.2016.1180994.  Google Scholar

[6]

E.M. BonottoM.C. BortolanT. Caraballo and R. Collegari, Attractors for impulsive non-autonomous dynamical systems and their relations, J. Differential Equations, 262 (2017), 3524-3550.  doi: 10.1016/j.jde.2016.11.036.  Google Scholar

[7]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Methods Appl. Sci., 39 (2016), 1435-1451.  doi: 10.1002/mma.3580.  Google Scholar

[8]

T. Caraballo and P.E. Kloeden, Non-autonomous attractors for integral-differential evolution equations, Discrete Contin. Dyn. Syst. Ser. S., 2 (2009), 17-36.  doi: 10.3934/dcdss.2009.2.17.  Google Scholar

[9]

T. CaraballoM.J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[10]

A. Chauhan and J. Dabas, Local and global existence of mild solution to an impulsive fractional functional integro-differential equations with nonlocal condition, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 821-829.  doi: 10.1016/j.cnsns.2013.07.025.  Google Scholar

[11]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.  doi: 10.1016/0022-0396(71)90004-0.  Google Scholar

[12]

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Comput. Modelling, 57 (2013), 754-763.   Google Scholar

[13]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[14]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, 2003.  Google Scholar

[15]

Z. B. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 232 (2014), 60-67.  doi: 10.1016/j.amc.2014.01.051.  Google Scholar

[16]

M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Spring-Verlag, 1981.  Google Scholar

[18]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.  Google Scholar

[19]

P. E. Kloeden, T. Lorenz and M. H. Yang, Forward attractors in discrete time nonautonomous dynamical systems, Springer International Publishing, 2016. Google Scholar

[20]

B. Øksendal, Stochastic Differential Equations, Springer-Verlag, 1985. doi: 10.1007/978-3-662-13050-6.  Google Scholar

[21]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[22]

Y. J. Li and Y. J. Wang, Uniform asymptotic stability of solutions of fractional functional differential equations, Abstr. Appl. Anal., 2013 (2013), Art. ID 532589, 8 pp.  Google Scholar

[23]

Y. J. Li and Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, In press. Google Scholar

[24]

A. H. LinY. Ren and N. M. Xia, On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators, Math. Comput. Modelling, 51 (2010), 413-424.  doi: 10.1016/j.mcm.2009.12.006.  Google Scholar

[25]

S. Y. Lin, Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2013 (2013), 9pp. doi: 10.1186/1029-242X-2013-549.  Google Scholar

[26]

R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Printed in the United States of America, 1976.  Google Scholar

[27]

V. D. Mil'man and A. D. Myskis, On the stability of motion in the prensence of impulses, Sibirsk. Mat. Zh., 1 (1960), 233-237.   Google Scholar

[28]

Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer-verlag, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[29]

X. R. Mao, Stochastic Differential Equations and Applications, Horwood Publication, Chichester, 1997. doi: 10.1533/9780857099402.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.  Google Scholar

[32]

J. Prüss, Evolutionary Integral Equations and Applications, Brikhauster, Springer Basel, 1993.  Google Scholar

[33]

Y. RenX. Cheng and R. Sakthivel, Impulsive neutral stochastic integral-differential equations with infinite delay fBm, Appl. Math. Comput., 247 (2014), 205-212.  doi: 10.1016/j.amc.2014.08.095.  Google Scholar

[34]

R. SakthivelP. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86.  doi: 10.1016/j.na.2012.10.009.  Google Scholar

[35]

J. H. Shen and X. Z. Liu, Global existence results of impulsive differential equation, J. Math. Anal. Appl., 314 (2006), 546-557.  doi: 10.1016/j.jmaa.2005.04.009.  Google Scholar

[36]

X. B. ShuY. Z. Lai and Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.  Google Scholar

[37]

S. TindelC. A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[38]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[39]

Y. J. WangF. S. Gao and P. E. Kloeden, Impulsive fractional functional differential equations with a weakly continuous nonlinearity, Electron. J. Differ. Equ., 285 (2017), 1-18.   Google Scholar

show all references

References:
[1]

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.  doi: 10.1016/j.na.2007.10.004.  Google Scholar

[2]

D. BahugunaR. Sakthivel and A. Chadha, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stoch. Anal. Appl., 35 (2017), 63-88.  doi: 10.1080/07362994.2016.1249285.  Google Scholar

[3]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001.  Google Scholar

[4]

M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, 2006. doi: 10.1155/9789775945501.  Google Scholar

[5]

T. BlouhiT. Caraballo and A. Ouahab, Existence and stability results for semilinear systems of impulsive stochastic differential equations with fractional Brownian motion, Stoch. Anal. Appl., 34 (2016), 792-834.  doi: 10.1080/07362994.2016.1180994.  Google Scholar

[6]

E.M. BonottoM.C. BortolanT. Caraballo and R. Collegari, Attractors for impulsive non-autonomous dynamical systems and their relations, J. Differential Equations, 262 (2017), 3524-3550.  doi: 10.1016/j.jde.2016.11.036.  Google Scholar

[7]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Methods Appl. Sci., 39 (2016), 1435-1451.  doi: 10.1002/mma.3580.  Google Scholar

[8]

T. Caraballo and P.E. Kloeden, Non-autonomous attractors for integral-differential evolution equations, Discrete Contin. Dyn. Syst. Ser. S., 2 (2009), 17-36.  doi: 10.3934/dcdss.2009.2.17.  Google Scholar

[9]

T. CaraballoM.J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[10]

A. Chauhan and J. Dabas, Local and global existence of mild solution to an impulsive fractional functional integro-differential equations with nonlocal condition, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 821-829.  doi: 10.1016/j.cnsns.2013.07.025.  Google Scholar

[11]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.  doi: 10.1016/0022-0396(71)90004-0.  Google Scholar

[12]

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Comput. Modelling, 57 (2013), 754-763.   Google Scholar

[13]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[14]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, 2003.  Google Scholar

[15]

Z. B. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 232 (2014), 60-67.  doi: 10.1016/j.amc.2014.01.051.  Google Scholar

[16]

M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Spring-Verlag, 1981.  Google Scholar

[18]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.  Google Scholar

[19]

P. E. Kloeden, T. Lorenz and M. H. Yang, Forward attractors in discrete time nonautonomous dynamical systems, Springer International Publishing, 2016. Google Scholar

[20]

B. Øksendal, Stochastic Differential Equations, Springer-Verlag, 1985. doi: 10.1007/978-3-662-13050-6.  Google Scholar

[21]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[22]

Y. J. Li and Y. J. Wang, Uniform asymptotic stability of solutions of fractional functional differential equations, Abstr. Appl. Anal., 2013 (2013), Art. ID 532589, 8 pp.  Google Scholar

[23]

Y. J. Li and Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, In press. Google Scholar

[24]

A. H. LinY. Ren and N. M. Xia, On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators, Math. Comput. Modelling, 51 (2010), 413-424.  doi: 10.1016/j.mcm.2009.12.006.  Google Scholar

[25]

S. Y. Lin, Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2013 (2013), 9pp. doi: 10.1186/1029-242X-2013-549.  Google Scholar

[26]

R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Printed in the United States of America, 1976.  Google Scholar

[27]

V. D. Mil'man and A. D. Myskis, On the stability of motion in the prensence of impulses, Sibirsk. Mat. Zh., 1 (1960), 233-237.   Google Scholar

[28]

Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer-verlag, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[29]

X. R. Mao, Stochastic Differential Equations and Applications, Horwood Publication, Chichester, 1997. doi: 10.1533/9780857099402.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.  Google Scholar

[32]

J. Prüss, Evolutionary Integral Equations and Applications, Brikhauster, Springer Basel, 1993.  Google Scholar

[33]

Y. RenX. Cheng and R. Sakthivel, Impulsive neutral stochastic integral-differential equations with infinite delay fBm, Appl. Math. Comput., 247 (2014), 205-212.  doi: 10.1016/j.amc.2014.08.095.  Google Scholar

[34]

R. SakthivelP. Revathi and Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal., 81 (2013), 70-86.  doi: 10.1016/j.na.2012.10.009.  Google Scholar

[35]

J. H. Shen and X. Z. Liu, Global existence results of impulsive differential equation, J. Math. Anal. Appl., 314 (2006), 546-557.  doi: 10.1016/j.jmaa.2005.04.009.  Google Scholar

[36]

X. B. ShuY. Z. Lai and Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.  Google Scholar

[37]

S. TindelC. A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[38]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[39]

Y. J. WangF. S. Gao and P. E. Kloeden, Impulsive fractional functional differential equations with a weakly continuous nonlinearity, Electron. J. Differ. Equ., 285 (2017), 1-18.   Google Scholar

[1]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[2]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (269)
  • HTML views (577)
  • Cited by (1)

Other articles
by authors

[Back to Top]