|
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
|
|
A. Ait Ou Ammi
and M. Marion
, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations, Numer. Math., 68 (1994)
, 189-213.
doi: 10.1007/s002110050056.
|
|
D. N. Arnold
, F. Brezzi
and M. Fortin
, A stable finite element for the Stokes equations, Calcolo, 21 (1984)
, 337-344.
doi: 10.1007/BF02576171.
|
|
G. A. Baker
, V. A. Dougalis
and O. A. Karakashian
, On a high order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp., 39 (1982)
, 339-375.
doi: 10.1090/S0025-5718-1982-0669634-0.
|
|
J. Bercovier
and O. Pironneau
, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979)
, 211-224.
doi: 10.1007/BF01399555.
|
|
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
|
|
J. F. Gerbeau, C. Le Bris and T. Lelièvre,
Mathematical Method for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.
doi: 10.1093/acprof:oso/9780198566656.001.0001.
|
|
V. Girault and P. A. Raviart,
Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, 1986.
doi: 10.1007/978-3-642-61623-5.
|
|
Y. N. He
and K. T. Li
, Nonlinear Galerkin method and two-step method for the Navier-Stokes equations, Numer. Methods for PDEs, 12 (1996)
, 283-305.
doi: 10.1002/(SICI)1098-2426(199605)12:3<283::AID-NUM1>3.0.CO;2-K.
|
|
Y. N. He
and K. T. Li
, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations, Numer. Math., 79 (1998)
, 77-106.
doi: 10.1007/s002110050332.
|
|
Y. N. He
, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003)
, 1263-1285.
doi: 10.1137/S0036142901385659.
|
|
Y. N. He
, H. L. Miao
, R. M. M. Mattheij
and Z. X. Chen
, Numerical analysis of a modified finite element nonlinear Galerkin method, Numer. Math., 97 (2004)
, 725-756.
doi: 10.1007/s00211-003-0516-3.
|
|
Y. N. He
, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with H2 or H1 initial data, Numer. Methods for PDEs, 21 (2005)
, 875-904.
doi: 10.1002/num.20065.
|
|
Y. N. He
, Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes problem, Math. Comp., 74 (2005)
, 1201-1216.
doi: 10.1090/S0025-5718-05-01751-5.
|
|
Y. N. He
and K. M. Liu
, A multi-level finite element method for the time-dependent Navier-Stokes equations, Numer. Methods for PDEs, 21 (2005)
, 1052-1068.
|
|
Y. N. He
and W. W. Sun
, Stability and convegence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007)
, 837-869.
doi: 10.1137/050639910.
|
|
Y. N. He
, Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with with L2 initial data, Numer. Methods for PDEs, 24 (2008)
, 79-103.
doi: 10.1002/num.20234.
|
|
Y. N. He
, Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77 (2008)
, 2097-2124.
doi: 10.1090/S0025-5718-08-02127-3.
|
|
Y. N. He
, Stability and convegence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations with non-smooth initial data, Numer. Methods for PDEs, 28 (2012)
, 155-187.
doi: 10.1002/num.20613.
|
|
Y. N. He
, P. Z. Huang
and X. L. Feng
, H2-stability of the first order finite element fully discrete schemes for the 2D time-dependent Navier-Stokes equations with smooth and non-smooth initial data, J. Sci. Comput., 62 (2015)
, 230-264.
doi: 10.1007/s10915-014-9854-9.
|
|
J. G. Heywood
and R. Rannacher
, Finite-element approximations of the nonstationary Navier-Stokes problem. Part Ⅰ: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19 (1982)
, 275-311.
doi: 10.1137/0719018.
|
|
J. G. Heywood
and R. Rannacher
, Finite-element approximations of the nonstationary Navier-Stokes problem. Part Ⅳ: Error estimates for second-order time discretization, SIAM J. Numer. Anal., 27 (1990)
, 353-384.
doi: 10.1137/0727022.
|
|
A. T. Hill
and E. Süli
, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20 (2000)
, 633-667.
doi: 10.1093/imanum/20.4.633.
|
|
H. Johnston
and J. G. Liu
, Accurate, stable and efficient Navier-Stokes slovers based on explicit treatment of the pressure term, J. Comput. Phys., 199 (2004)
, 221-259.
doi: 10.1016/j.jcp.2004.02.009.
|
|
J. Kim
and P. Moin
, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985)
, 308-323.
doi: 10.1016/0021-9991(85)90148-2.
|
|
R. B. Kellogg
and J. E. Osborn
, A regularity result for the Stokes problem in a convex polygon, J. Functional Anal., 21 (1976)
, 397-431.
doi: 10.1016/0022-1236(76)90035-5.
|
|
M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in: Handbook of Numerical Analysis, Vol. Ⅵ, pp. 503–688, North-Holland, Amsterdam, 1998.
|
|
J. Shen
, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38 (1990)
, 201-229.
doi: 10.1080/00036819008839963.
|
|
J. C. Simo
and F. Armero
, Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations, Comput. Methods Appl. Mech. Engrg., 111 (1994)
, 111-154.
doi: 10.1016/0045-7825(94)90042-6.
|
|
R. Temam,
Navier-Stokes Equations, Theory and Numerical Analysis, 3rd ed., North-Holland, Amsterdam, 1984.
|
|
F. Tone
, Error analysis for a second scheme for the Navier-Stokes equations, Appl. Numer. Math., 50 (2004)
, 93-119.
doi: 10.1016/j.apnum.2003.12.003.
|