August  2019, 24(8): 3537-3556. doi: 10.3934/dcdsb.2018277

Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems

1. 

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127051, Russia

2. 

Kotel'nikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

Dedicated to Peter Kloeden on the occasion of his 70th birthday, friendship with whom refutes the thesis that "East is East, and West is West, and never the twain shall meet"

Received  January 2018 Revised  April 2018 Published  October 2018

Fund Project: The author is supported by the Russian Science Foundation, Project number 16-11-00063.

To estimate the growth rate of matrix products $A_{n}··· A_{1}$ with factors from some set of matrices $\mathscr{A}$, such numeric quantities as the joint spectral radius $ρ(\mathscr{A})$ and the lower spectral radius $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \rho } (\mathscr{A})$ are traditionally used. The first of these quantities characterizes the maximum growth rate of the norms of the corresponding products, while the second one characterizes the minimal growth rate. In the theory of discrete-time linear switching systems, the inequality $ρ(\mathscr{A})<1$ serves as a criterion for the stability of a system, and the inequality $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \rho } (\mathscr{A})<1 $ as a criterion for stabilizability.

Given a set $\mathscr{A}$ of $N×M$ matrices and a set $\mathscr{B}$ of $M×N$ matrices. Then, for matrix products $A_{n}B_{n}··· A_{1}B_{1}$ with factors $A_{i}∈\mathscr{A}$ and $B_{i}∈\mathscr{B}$, we introduce the quantities $μ(\mathscr{A},\mathscr{B})$ and $η(\mathscr{A},\mathscr{B})$, called the lower and upper minimax joint spectral radius of the pair $\{\mathscr{A},\mathscr{B}\}$, respectively, which characterize the maximum growth rate of the matrix products $A_{n}B_{n}··· A_{1}B_{1}$ over all sets of matrices $A_{i}∈\mathscr{A}$ and the minimal growth rate over all sets of matrices $B_{i}∈\mathscr{B}$. In this sense, the minimax joint spectral radii can be considered as generalizations of both the joint and lower spectral radii. As an application of the minimax joint spectral radii, it is shown how these quantities can be used to analyze the stabilizability of discrete-time linear switching control systems in the presence of uncontrolled external disturbances of the plant.

Citation: Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277
References:
[1]

E. Asarin, J. Cervelle, A. Degorre, C. Dima, F. Horn and V. Kozyakin, Entropy games and matrix multiplication games, in 33rd Symposium on Theoretical Aspects of Computer Science, (STACS 2016) (eds. N. Ollinger and H. Vollmer), vol. 47 of LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, 14pp. doi: 10.4230/LIPIcs.STACS.2016.11.  Google Scholar

[2]

M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl., 166 (1992), 21-27.  doi: 10.1016/0024-3795(92)90267-E.  Google Scholar

[3]

V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 865-876.  doi: 10.1137/080723764.  Google Scholar

[4]

J. Bochi and I. D. Morris, Continuity properties of the lower spectral radius, Proc. Lond. Math. Soc. (3), 110 (2015), 477-509.  doi: 10.1112/plms/pdu058.  Google Scholar

[5]

T. Bousch and J. Mairesse, Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture, J. Amer. Math. Soc., 15 (2002), 77-111.  doi: 10.1090/S0894-0347-01-00378-2.  Google Scholar

[6]

P. BouyerN. MarkeyM. RandourK. G. Larsen and S. Laursen, Average-energy games, Acta Informatica, 55 (2018), 91-127.  doi: 10.1007/s00236-016-0274-1.  Google Scholar

[7]

A. Czornik, On the generalized spectral subradius, Linear Algebra Appl., 407 (2005), 242-248.  doi: 10.1016/j.laa.2005.05.006.  Google Scholar

[8]

X. DaiY. HuangJ. Liu and M. Xiao, The finite-step realizability of the joint spectral radius of a pair of d×d matrices one of which being rank-one, Linear Algebra Appl., 437 (2012), 1548-1561.  doi: 10.1016/j.laa.2012.04.053.  Google Scholar

[9]

X. Dai, A Gel'fand-type spectral-radius formula and stability of linear constrained switching systems, Linear Algebra Appl., 436 (2012), 1099-1113.  doi: 10.1016/j.laa.2011.07.029.  Google Scholar

[10]

X. Dai, Some criteria for spectral finiteness of a finite subset of the real matrix space $\mathbb{R}^{d× d}$, Linear Algebra Appl., 438 (2013), 2717-2727.  doi: 10.1016/j.laa.2012.09.026.  Google Scholar

[11]

X. Dai, Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations, J. Franklin Inst., 351 (2014), 2910-2937.  doi: 10.1016/j.jfranklin.2014.01.010.  Google Scholar

[12]

X. DaiY. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities, Automatica J. IFAC, 47 (2011), 1512-1519.  doi: 10.1016/j.automatica.2011.02.034.  Google Scholar

[13]

X. DaiY. Huang and M. Xiao, Pointwise stability of descrete-time stationary matrix-valued Markovian processes, IEEE Trans. Automat. Control, 60 (2015), 1898-1903.  doi: 10.1109/TAC.2014.2361594.  Google Scholar

[14]

I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra Appl., 161 (1992), 227-263.  doi: 10.1016/0024-3795(92)90012-Y.  Google Scholar

[15]

M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17 (1923), 228-249.  doi: 10.1007/BF01504345.  Google Scholar

[16]

L. Gurvits, Stability of discrete linear inclusion, Linear Algebra Appl., 231 (1995), 47-85.  doi: 10.1016/0024-3795(95)90006-3.  Google Scholar

[17]

C. Heil and G. Strang, Continuity of the joint spectral radius: application to wavelets, in Linear algebra for signal processing (Minneapolis, MN, 1992), vol. 69 of IMA Vol. Math. Appl., Springer, New York, 1995, 51-61. doi: 10.1007/978-1-4612-4228-4_4.  Google Scholar

[18]

R. Jungers, The Joint Spectral Radius, vol. 385 of Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 2009, Theory and applications. doi: 10.1007/978-3-540-95980-9.  Google Scholar

[19]

R. M. Jungers, On asymptotic properties of matrix semigroups with an invariant cone, Linear Algebra Appl., 437 (2012), 1205-1214.  doi: 10.1016/j.laa.2012.04.006.  Google Scholar

[20]

R. M. Jungers and P. Mason, On feedback stabilization of linear switched systems via switching signal control, SIAM J. Control Optim., 55 (2017), 1179-1198.  doi: 10.1137/15M1027802.  Google Scholar

[21]

V. S. Kozyakin, On the absolute stability of systems with asynchronously operating pulse elements, Avtomat. i Telemekh., 1990, 56-63, In Russian, translation in Automat. Remote Control, 51 (1990), 1349-1355 (1991).  Google Scholar

[22]

V. S. Kozyakin, Constructive stability and stabilizability of positive linear discrete-time switching systems, Journal of Communications Technology and Electronics, 62 (2017), 686-693.  doi: 10.1134/S1064226917060110.  Google Scholar

[23]

V. Kozyakin, An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., 433 (2010), 12-18.  doi: 10.1016/j.laa.2010.01.028.  Google Scholar

[24]

V. Kozyakin, An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius, Preprint, Institute for Information Transmission Problems, Moscow, 2013. doi: 10.13140/2.1.4257.5040.  Google Scholar

[25]

V. Kozyakin, Hourglass alternative and the finiteness conjecture for the spectral characteristics of sets of non-negative matrices, Linear Algebra Appl., 489 (2016), 167-185.  doi: 10.1016/j.laa.2015.10.017.  Google Scholar

[26]

V. Kozyakin, Minimax theorem for the spectral radius of the product of non-negative matrices, Linear and Multilinear Algebra, 65 (2017), 2356-2365.  doi: 10.1080/03081087.2016.1273877.  Google Scholar

[27]

V. Kozyakin, On convergence of infinite matrix products with alternating factors from two sets of matrices, Discrete Dyn. Nat. Soc., 2018 (2018), Art. ID 9216760, 5 pp. doi: 10.1155/2018/9216760.  Google Scholar

[28]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[29]

G.-C. Rota and G. Strang, A note on the joint spectral radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math., 22 (1960), 379-381.  doi: 10.1016/S1385-7258(60)50046-1.  Google Scholar

[30]

M.-H. ShihJ.-W. Wu and C.-T. Pang, Asymptotic stability and generalized Gelfand spectral radius formula, Linear Algebra Appl., 252 (1997), 61-70.  doi: 10.1016/0024-3795(95)00592-7.  Google Scholar

[31]

D. P. Stanford, Stability for a multi-rate sampled-data system, SIAM J. Control Optim., 17 (1979), 390-399.  doi: 10.1137/0317029.  Google Scholar

[32]

D. P. Stanford and J. M. Urbano, Some convergence properties of matrix sets, SIAM J. Matrix Anal. Appl., 15 (1994), 1132-1140.  doi: 10.1137/S0895479892228213.  Google Scholar

[33]

Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Communications and Control Engineering, Springer, London, 2005. doi: 10.1007/1-84628-131-8.  Google Scholar

[34]

J. Theys, Joint Spectral Radius: Theory and Approximations, PhD thesis, Faculté des sciences appliquées, Département d'ingénierie mathématique, Center for Systems Engineering and Applied Mechanics, Université Catholique de Louvain, 2005. Google Scholar

[35]

J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 2nd edition, Princeton University Press, Princeton, N. J., 1947.  Google Scholar

[36]

F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl., 342 (2002), 17-40.  doi: 10.1016/S0024-3795(01)00446-3.  Google Scholar

show all references

References:
[1]

E. Asarin, J. Cervelle, A. Degorre, C. Dima, F. Horn and V. Kozyakin, Entropy games and matrix multiplication games, in 33rd Symposium on Theoretical Aspects of Computer Science, (STACS 2016) (eds. N. Ollinger and H. Vollmer), vol. 47 of LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, 14pp. doi: 10.4230/LIPIcs.STACS.2016.11.  Google Scholar

[2]

M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl., 166 (1992), 21-27.  doi: 10.1016/0024-3795(92)90267-E.  Google Scholar

[3]

V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 865-876.  doi: 10.1137/080723764.  Google Scholar

[4]

J. Bochi and I. D. Morris, Continuity properties of the lower spectral radius, Proc. Lond. Math. Soc. (3), 110 (2015), 477-509.  doi: 10.1112/plms/pdu058.  Google Scholar

[5]

T. Bousch and J. Mairesse, Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture, J. Amer. Math. Soc., 15 (2002), 77-111.  doi: 10.1090/S0894-0347-01-00378-2.  Google Scholar

[6]

P. BouyerN. MarkeyM. RandourK. G. Larsen and S. Laursen, Average-energy games, Acta Informatica, 55 (2018), 91-127.  doi: 10.1007/s00236-016-0274-1.  Google Scholar

[7]

A. Czornik, On the generalized spectral subradius, Linear Algebra Appl., 407 (2005), 242-248.  doi: 10.1016/j.laa.2005.05.006.  Google Scholar

[8]

X. DaiY. HuangJ. Liu and M. Xiao, The finite-step realizability of the joint spectral radius of a pair of d×d matrices one of which being rank-one, Linear Algebra Appl., 437 (2012), 1548-1561.  doi: 10.1016/j.laa.2012.04.053.  Google Scholar

[9]

X. Dai, A Gel'fand-type spectral-radius formula and stability of linear constrained switching systems, Linear Algebra Appl., 436 (2012), 1099-1113.  doi: 10.1016/j.laa.2011.07.029.  Google Scholar

[10]

X. Dai, Some criteria for spectral finiteness of a finite subset of the real matrix space $\mathbb{R}^{d× d}$, Linear Algebra Appl., 438 (2013), 2717-2727.  doi: 10.1016/j.laa.2012.09.026.  Google Scholar

[11]

X. Dai, Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations, J. Franklin Inst., 351 (2014), 2910-2937.  doi: 10.1016/j.jfranklin.2014.01.010.  Google Scholar

[12]

X. DaiY. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities, Automatica J. IFAC, 47 (2011), 1512-1519.  doi: 10.1016/j.automatica.2011.02.034.  Google Scholar

[13]

X. DaiY. Huang and M. Xiao, Pointwise stability of descrete-time stationary matrix-valued Markovian processes, IEEE Trans. Automat. Control, 60 (2015), 1898-1903.  doi: 10.1109/TAC.2014.2361594.  Google Scholar

[14]

I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra Appl., 161 (1992), 227-263.  doi: 10.1016/0024-3795(92)90012-Y.  Google Scholar

[15]

M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17 (1923), 228-249.  doi: 10.1007/BF01504345.  Google Scholar

[16]

L. Gurvits, Stability of discrete linear inclusion, Linear Algebra Appl., 231 (1995), 47-85.  doi: 10.1016/0024-3795(95)90006-3.  Google Scholar

[17]

C. Heil and G. Strang, Continuity of the joint spectral radius: application to wavelets, in Linear algebra for signal processing (Minneapolis, MN, 1992), vol. 69 of IMA Vol. Math. Appl., Springer, New York, 1995, 51-61. doi: 10.1007/978-1-4612-4228-4_4.  Google Scholar

[18]

R. Jungers, The Joint Spectral Radius, vol. 385 of Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 2009, Theory and applications. doi: 10.1007/978-3-540-95980-9.  Google Scholar

[19]

R. M. Jungers, On asymptotic properties of matrix semigroups with an invariant cone, Linear Algebra Appl., 437 (2012), 1205-1214.  doi: 10.1016/j.laa.2012.04.006.  Google Scholar

[20]

R. M. Jungers and P. Mason, On feedback stabilization of linear switched systems via switching signal control, SIAM J. Control Optim., 55 (2017), 1179-1198.  doi: 10.1137/15M1027802.  Google Scholar

[21]

V. S. Kozyakin, On the absolute stability of systems with asynchronously operating pulse elements, Avtomat. i Telemekh., 1990, 56-63, In Russian, translation in Automat. Remote Control, 51 (1990), 1349-1355 (1991).  Google Scholar

[22]

V. S. Kozyakin, Constructive stability and stabilizability of positive linear discrete-time switching systems, Journal of Communications Technology and Electronics, 62 (2017), 686-693.  doi: 10.1134/S1064226917060110.  Google Scholar

[23]

V. Kozyakin, An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., 433 (2010), 12-18.  doi: 10.1016/j.laa.2010.01.028.  Google Scholar

[24]

V. Kozyakin, An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius, Preprint, Institute for Information Transmission Problems, Moscow, 2013. doi: 10.13140/2.1.4257.5040.  Google Scholar

[25]

V. Kozyakin, Hourglass alternative and the finiteness conjecture for the spectral characteristics of sets of non-negative matrices, Linear Algebra Appl., 489 (2016), 167-185.  doi: 10.1016/j.laa.2015.10.017.  Google Scholar

[26]

V. Kozyakin, Minimax theorem for the spectral radius of the product of non-negative matrices, Linear and Multilinear Algebra, 65 (2017), 2356-2365.  doi: 10.1080/03081087.2016.1273877.  Google Scholar

[27]

V. Kozyakin, On convergence of infinite matrix products with alternating factors from two sets of matrices, Discrete Dyn. Nat. Soc., 2018 (2018), Art. ID 9216760, 5 pp. doi: 10.1155/2018/9216760.  Google Scholar

[28]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[29]

G.-C. Rota and G. Strang, A note on the joint spectral radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math., 22 (1960), 379-381.  doi: 10.1016/S1385-7258(60)50046-1.  Google Scholar

[30]

M.-H. ShihJ.-W. Wu and C.-T. Pang, Asymptotic stability and generalized Gelfand spectral radius formula, Linear Algebra Appl., 252 (1997), 61-70.  doi: 10.1016/0024-3795(95)00592-7.  Google Scholar

[31]

D. P. Stanford, Stability for a multi-rate sampled-data system, SIAM J. Control Optim., 17 (1979), 390-399.  doi: 10.1137/0317029.  Google Scholar

[32]

D. P. Stanford and J. M. Urbano, Some convergence properties of matrix sets, SIAM J. Matrix Anal. Appl., 15 (1994), 1132-1140.  doi: 10.1137/S0895479892228213.  Google Scholar

[33]

Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Communications and Control Engineering, Springer, London, 2005. doi: 10.1007/1-84628-131-8.  Google Scholar

[34]

J. Theys, Joint Spectral Radius: Theory and Approximations, PhD thesis, Faculté des sciences appliquées, Département d'ingénierie mathématique, Center for Systems Engineering and Applied Mechanics, Université Catholique de Louvain, 2005. Google Scholar

[35]

J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 2nd edition, Princeton University Press, Princeton, N. J., 1947.  Google Scholar

[36]

F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl., 342 (2002), 17-40.  doi: 10.1016/S0024-3795(01)00446-3.  Google Scholar

Figure 1.  Discrete-time linear switching system
Figure 2.  Control system consisting of plant $\mathit{\boldsymbol{ \boldsymbol{\mathscr{A}} }}$ and controller $\mathit{\boldsymbol{ \boldsymbol{\mathscr{B}} }}$
[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[3]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[10]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[11]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[15]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[16]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[19]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[20]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (79)
  • HTML views (713)
  • Cited by (1)

Other articles
by authors

[Back to Top]