[1]
|
S. Al-azzawi, J. Liu and X. Liu, Convergence rate of synchronization of systems with additive noise, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 227-245.
doi: 10.3934/dcdsb.2017012.
|
[2]
|
L.Arnold, Random Dynamical Systems, Springer Berlin Heidelberg, 1998.
|
[3]
|
J. Barlow, W. Schaffner, F. de Noyelles, B. Peterson and J. Peterson, Continuous Flow Nutrient Bioassays with Natural Phytoplankton Populations, G. Glass (Editor): Bioassay Techniques and Environmental Chemistry, John Wiley & Sons Ltd., 1973.
|
[4]
|
F. Campillo, M. Joannides and I. Larramendy-Valverde, Stochastic modeling of the chemostat, Ecological Modelling, 222 (2011), 2676-2689.
doi: 10.1016/j.ecolmodel.2011.04.027.
|
[5]
|
F. Campillo, M. Joannides and I. Larramendy-Valverde, Approximation of the Fokker-Planck equation of the stochastic chemostat, Mathematics and Computers in Simulation, 99 (2014), 37-53.
doi: 10.1016/j.matcom.2013.04.012.
|
[6]
|
F. Campillo, M. Joannides and I. Larramendy-Valverde, Analysis and approximation of a stochastic growth model with extinction, Methodology and Computing in Applied Probability, 18 (2016), 499-515.
doi: 10.1007/s11009-015-9438-7.
|
[7]
|
T. Caraballo, M. J. Garrido-Atienza and J. López-de-la-Cruz, Some aspects concerning the dynamics of stochastic chemostats, Advances in Dynamical Systems and Control, 227–246, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016.
|
[8]
|
T. Caraballo, M.J. Garrido-uppercaseatienza and J. López-de-la-uppercasecruz, Dynamics of some stochastic chemostat models with multiplicative noise, Communications on Pure and Applied Analysis, 16 (2017), 1893-1914.
doi: 10.3934/cpaa.2017092.
|
[9]
|
T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz and A. Rapaport, Corrigendum to "Some aspects concerning the dynamics of stochastic chemostats", 2017, arXiv: 1710.00774 [math.DS].
|
[10]
|
T. Caraballo, M.J. Garrido-uppercaseatienza, B. Schmalfuss and J. Valero, Asymptotic behavior of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 439-455.
doi: 10.3934/dcdsb.2010.14.439.
|
[11]
|
T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied Dynamical Systems, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-49247-6.
|
[12]
|
T. Caraballo, P.E. Kloeden and B. Schmalfuss, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Applied Mathematics and Optimization, 50 (2004), 183-207.
doi: 10.1007/s00245-004-0802-1.
|
[13]
|
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7.
|
[14]
|
T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis: Theory, Methods & Applications, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111.
|
[15]
|
I.F. Creed, D.M. McKnight, B.A. Pellerin, M.B. Green, B.A. Bergamaschi, G.R. Aiken, D.A. Burns, S.E.G. Findlay, J.B. Shanley, R.G. Striegl, B.T. Aulenbach, D.W. Clow, H. Laudon, B.L. McGlynn, K.J. McGuire, R.A. Smith and S.M. Stackpoole, The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum, Canadian Journal of Fisheries and Aquatic Sciences, 72 (2015), 1272-1285.
doi: 10.1139/cjfas-2014-0400.
|
[16]
|
G. D'Ans, P. Kokotovic and D. Gottlieb, A nonlinear regulator problem for a model of biological waste treatment, IEEE Transactions on Automatic Control, 16 (1971), 341-347.
|
[17]
|
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic navier-stokes equation with multiplicative white noise, Stochastics and Stochastic Reports, 59 (1996), 21-45.
doi: 10.1080/17442509608834083.
|
[18]
|
J. Grasman, M.D. Gee and O.A.V. Herwaarden, Breakdown of a chemostat exposed to stochastic noise, Journal of Engineering Mathematics, 53 (2005), 291-300.
doi: 10.1007/s10665-005-9004-3.
|
[19]
|
J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Micro-organisms Cultures, Wiley, Chemical Engineering Series, John Wiley & Sons, Inc., 2017.
|
[20]
|
D.J. Higham., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.
doi: 10.1137/S0036144500378302.
|
[21]
|
S.B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.
doi: 10.1137/0132030.
|
[22]
|
L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, Journal of Differential Equations, 217 (2005), 26-53.
doi: 10.1016/j.jde.2005.06.017.
|
[23]
|
H.W. Jannasch, Steady state and the chemostat in ecology, Limnology and Oceanography, 19 (1974), 716-720.
|
[24]
|
J. Kalff and R. Knoechel, Phytoplankton and their dynamics in oligotrophic and eutrophic lakes, Annual Review of Ecology and Systematics, 9 (1978), 475-495.
doi: 10.1146/annurev.es.09.110178.002355.
|
[25]
|
J. W. M. La Rivière, Microbial ecology of liquid waste treatment, in Advances in Microbial Ecology, vol. 1, Springer US, 1977, 215–259.
|
[26]
|
E. Rurangwa and M.C.J. Verdegem, Microorganisms in recirculating aquaculture systems and their management, Reviews in Aquaculture, 7 (2015), 117-130.
doi: 10.1111/raq.12057.
|
[27]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511530043.
|
[28]
|
L. Wang and D. Jiang, Periodic solution for the stochastic chemostat with general response function, Physica A: Statistical Mechanics and its Applications, 486 (2017), 378-385.
doi: 10.1016/j.physa.2017.05.097.
|
[29]
|
L. Wang, D. Jiang and D. O'Regan, The periodic solutions of a stochastic chemostat model with periodic washout rate, Communications in Nonlinear Science and Numerical Simulation, 37 (2016), 1-13.
doi: 10.1016/j.cnsns.2016.01.002.
|
[30]
|
C. Xu and S. Yuan, An analogue of break-even concentration in a simple stochastic chemostat model, Applied Mathematics Letters, 48 (2015), 62-68.
doi: 10.1016/j.aml.2015.03.012.
|
[31]
|
C. Xu, S. Yuan and T. Zhang, Asymptotic behavior of a chemostat model with stochastic perturbation on the dilution rate, Abstract and Applied Analysis, 2013 (2013), Art. ID 423154, 11 pp.
|
[32]
|
D. Zhao and S. Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, Journal of Mathematical Analysis and Applications, 434 (2016), 1336-1345.
doi: 10.1016/j.jmaa.2015.09.070.
|
[33]
|
D. Zhao and S. Yuan, Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation, Communications in Nonlinear Science and Numerical Simulation, 46 (2017), 62-73.
doi: 10.1016/j.cnsns.2016.10.014.
|