In this article, we consider the Cauchy problem to chemotaxis model coupled to the incompressible Navier-Stokes equations. Using the Fourier frequency localization and the Bony paraproduct decomposition, we establish the global-in-time existence of the solution when the gravitational potential ϕ and the small initial data $(u_{0}, n_{0}, c_{0})$ in critical Besov spaces under certain conditions. Moreover, we prove that there exist two positive constants σ0 and $C_{0}$ such that if the gravitational potential $\phi \in \dot B_{p,1}^{3/p}({\mathbb{R}^3})$ and the initial data $(u_{0}, n_{0}, c_{0}): = (u_{0}^{1}, u_{0}^{2}, u_{0}^{3}, n_{0}, c_{0}): = (u_{0}^{h}, u_{0}^{3}, n_{0}, c_{0})$ satisfies
$\begin{equation*}\begin{aligned} &\left(\left\|u_{0}^{h}\right\|_{\dot{B}^{-1+3/p}_{p, 1}(\mathbb{R}^3)}+\left\|\left(n_{0}, c_{0}\right)\right\|_{\dot{B}^{-2+3/q}_{q, 1}(\mathbb{R}^3) \times \dot{B}^{3/q}_{q, 1}(\mathbb{R}^3)}\right)\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times\exp\left\{C_{0}\left(\left\|u_{0}^{3}\right\|_{\dot{B}^{-1+3/p}_{p, 1}(\mathbb{R}^3)}+1\right)^{2}\right\} \leq \sigma_{0}\end{aligned}\end{equation*}$
for some $p, q$ with $1<p, q<6,\frac{1}{p}+\frac{1}{q}>\frac{2}{3}$ and $\frac{1}{\min\{p, q\}}-\frac{1}{\max\{p, q\}} \le \frac{1}{3}$, then the global existence results can be extended to the global solutions without any small conditions imposed on the third component of the initial velocity field $u_{0}^{3}$ in critical Besov spaces with the aid of continuity argument. Our initial data class is larger than that of some known results. Our results are completely new even for three-dimensional chemotaxis-Navier-Stokes system.
Citation: |
M. Chae
, K. Kang
and J. Lee
, Existence of smooth solutions to coupled chemotaxis-fuid equations, Discrete Contin. Dyn. Syst., 33 (2013)
, 2271-2297.
doi: 10.3934/dcds.2013.33.2271.![]() ![]() ![]() |
|
M. Chae
, K. Kang
and J. Lee
, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Differ. Equ., 39 (2014)
, 1205-1235.
doi: 10.1080/03605302.2013.852224.![]() ![]() ![]() |
|
M. Chae, K. Kang and J. Lee, Asymptotic behaviors of solutions for an aerobatic model coupled to fluid equations, J. Korean Math. Soc., 53 (2016), 127-146, arxiv.org/abs/1403.3713
doi: 10.4134/JKMS.2016.53.1.127.![]() ![]() ![]() |
|
Y. Chemin
, Théorémes dunicité pour le systéme de Navier-Stokes tridimensionnal, J. Anal. Math., 77 (1999)
, 27-50.
doi: 10.1007/BF02791256.![]() ![]() ![]() |
|
Y. Chemin
, M. Paicu
and P. Zhang
, Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable diffusion, J. Differential Equations, 256 (2014)
, 223-252.
doi: 10.1016/j.jde.2013.09.004.![]() ![]() ![]() |
|
Y. Chemin
and P. Zhang
, On the global well-posedness to the 3D incompressible anisotropic Navier-Stokes equations, Comm. Math. Phys., 272 (2007)
, 529-566.
doi: 10.1007/s00220-007-0236-0.![]() ![]() ![]() |
|
H. Choe
and B. Lkhagvasuren
, Global existence result for Chemotaxis Navier-Stokes equations in the critical Besov spaces, J. Math. Anal. Appl., 446 (2017)
, 1415-1426.
doi: 10.1016/j.jmaa.2016.09.050.![]() ![]() ![]() |
|
Y. Chung and K. Kang, Existence of global solutions for a Keller-Segel-fluid equations with nonlinear diffusion, arXiv: 1504.02274.
![]() |
|
P. Constantin
, A. Kiselev
, L. Ryzhik
and A. Zlatoš
, Diffusion and mixing in fluid flow, Ann. Math., 168 (2008)
, 643-674.
doi: 10.4007/annals.2008.168.643.![]() ![]() ![]() |
|
R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14, November 2005.
![]() |
|
R. Danchin
, Local theory in critical spaces for compressible viscous and heat-conducting gases, Comm. Partial Differ. Equ., 26 (2001)
, 1183-1233.
doi: 10.1081/PDE-100106132.![]() ![]() ![]() |
|
R. Duan
, A. Lorz
and P. Markowich
, Global solutions to the coupled chemotaxis-fuid equations, Comm. Partial Differ. Equ., 35 (2010)
, 1635-1673.
doi: 10.1080/03605302.2010.497199.![]() ![]() ![]() |
|
R. Duan
and Z. Xiang
, Global solutions to the coupled chemotaxis-fuid equations, Int. Math. Res. Not. IMRN, (2014)
, 1833-1852.
doi: 10.1093/imrn/rns270.![]() ![]() ![]() |
|
E. Espejo
and T. Suzuki
, Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. Real World Appl., 21 (2015)
, 110-126.
doi: 10.1016/j.nonrwa.2014.07.001.![]() ![]() ![]() |
|
M. Francesco
, A. Lorz
and P. Markowich
, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010)
, 1437-1453.
doi: 10.3934/dcds.2010.28.1437.![]() ![]() ![]() |
|
H. Fujita
and T. Kato
, On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 16 (1964)
, 269-315.
doi: 10.1007/BF00276188.![]() ![]() ![]() |
|
B. Hajer, Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2011.
doi: 10.1007/978-3-642-16830-7.![]() ![]() ![]() |
|
M. Herrero
and L. Velazquez
, A blow-up mechanism for chemotaxis model, Ann. Sc. Norm. Super. Pisa., 24 (1997)
, 633-683.
![]() ![]() |
|
D. Horstman
and G. Wang
, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001)
, 159-177.
doi: 10.1017/S0956792501004363.![]() ![]() ![]() |
|
J. Huang
, M. Paicu
and P. Zhang
, Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-Lipschitz velocity, Arch. Ration. Mech. Anal., 209 (2013)
, 631-382.
doi: 10.1007/s00205-013-0624-x.![]() ![]() ![]() |
|
T. Kato
, Strong Lp-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984)
, 471-480.
doi: 10.1007/BF01174182.![]() ![]() ![]() |
|
E. Keller
and L. Segel
, Initiation of slide mold aggregation viewd as an instability, J. Theor. Biol., 6 (1970)
, 399-415.
![]() |
|
E. Keller
and L. Segel
, Model for chemotaxis, J. Theor. Biol., 30 (1971)
, 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
|
A. Kiselev
and L. Ryzhik
, Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Annales de l'Institut Henri Poincaré(C) Non Linear Analysis, 18 (2001)
, 309-358.
doi: 10.1016/S0294-1449(01)00068-3.![]() ![]() ![]() |
|
A. Kiselev
and X. Xu
, Suppression of chemotactic explosion by mixing, Arch. Ration. Mech. Anal., 222 (2016)
, 1077-1112.
doi: 10.1007/s00205-016-1017-8.![]() ![]() ![]() |
|
J. Leray
, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934)
, 193-248.
doi: 10.1007/BF02547354.![]() ![]() ![]() |
|
H. Koch
and D. Tataru
, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001)
, 22-35.
doi: 10.1006/aima.2000.1937.![]() ![]() ![]() |
|
H. Kozono
and M. Nakao
, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J., 48 (1996)
, 33-50.
doi: 10.2748/tmj/1178225411.![]() ![]() ![]() |
|
H. Kozono
and M. Yamazaki
, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differ. Equ., 19 (1994)
, 959-1014.
doi: 10.1080/03605309408821042.![]() ![]() ![]() |
|
H. Liu
and H. Gao
, Global well-posedness and long time decay of the 3D Boussinesq equations, J. Differential Equations, 263 (2017)
, 8649-8665.
doi: 10.1016/j.jde.2017.08.049.![]() ![]() ![]() |
|
J. Liu
and A. Lorz
, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H.Poincaré Anal. Non Linéaire, 28 (2011)
, 643-652.
doi: 10.1016/j.anihpc.2011.04.005.![]() ![]() ![]() |
|
Q. Liu
, T. Zhang
and J. Zhao
, Global solutions to the 3D incompressible nematic liquid crystal system, J. Differential Equations, 258 (2015)
, 1519-1547.
doi: 10.1016/j.jde.2014.11.002.![]() ![]() ![]() |
|
A. Lorz
, Coupled chemotaxis fuid model, Math. Models Methods Appl. Sci., 20 (2010)
, 987-1004.
doi: 10.1142/S0218202510004507.![]() ![]() ![]() |
|
A. Lorz
, A coupled Keller-Segel-Stokes model: Global existence for small initial data and blow-up delay, Commun. Math. Sci., 10 (2012)
, 555-574.
doi: 10.4310/CMS.2012.v10.n2.a7.![]() ![]() ![]() |
|
Y. Minsuk
, L. Bataa
and C. Hi
, Well posedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces, Commun. Pure Appl. Anal., 14 (2015)
, 2453-2464.
doi: 10.3934/cpaa.2015.14.2453.![]() ![]() ![]() |
|
T. Nagai
, T. Senba
and K. Yoshida
, Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial Ekvac., 40 (1997)
, 411-433.
![]() ![]() |
|
K. Osaki
and A. Yagi
, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001)
, 441-469.
![]() ![]() |
|
M. Paicu
, équation anisotrope de Navier-Stokes dans des espaces critiques, Rev. Mat. Iberoam., 21 (2005)
, 179-235.
doi: 10.4171/RMI/420.![]() ![]() ![]() |
|
M. Paicu
and P. Zhang
, Global solutions to the 3D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012)
, 3556-3584.
doi: 10.1016/j.jfa.2012.01.022.![]() ![]() ![]() |
|
C. Patlak
, Random walk with persistence and external bias, Bull. Math. Biol. Biophys., 15 (1953)
, 311-338.
doi: 10.1007/BF02476407.![]() ![]() ![]() |
|
F. Planchon
, Sur un inégalité de type Poincaré, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000)
, 21-23.
doi: 10.1016/S0764-4442(00)88138-0.![]() ![]() ![]() |
|
Y. Tao
, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011)
, 521-529.
doi: 10.1016/j.jmaa.2011.02.041.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012)
, 1901-1914.
doi: 10.3934/dcds.2012.32.1901.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Locally bounded global solutions in a three-dimensional Chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013)
, 157-178.
doi: 10.1016/j.anihpc.2012.07.002.![]() ![]() ![]() |
|
Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), Art. 138, 23 pp.
doi: 10.1007/s00033-016-0732-1.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012)
, 2520-2543.
doi: 10.1016/j.jde.2011.07.010.![]() ![]() ![]() |
|
I. Tuval
, L. Cisneros
, C. Dombrowski
, C. W. Wolgemuth
, J. O. Kessler
and R. E. Goldstein
, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005)
, 2277-2282.
doi: 10.1073/pnas.0406724102.![]() ![]() |
|
P. Wang
and D. Zhang
, Convexity of Level Sets of Minimal Graph on Space Form with Nonnegative Curvature, J. Differential Equations, 262 (2017)
, 5534-5564.
doi: 10.1016/j.jde.2017.02.010.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
M. Winkler
, Stabilization in a two-dimensional Chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014)
, 455-487.
doi: 10.1007/s00205-013-0678-9.![]() ![]() ![]() |
|
M. Winkler
, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Comm. Partial Differ. Equ., 54 (2015)
, 3789-3828.
doi: 10.1007/s00526-015-0922-2.![]() ![]() ![]() |
|
M. Winkler
, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013)
, 748-767.
doi: 10.1016/j.matpur.2013.01.020.![]() ![]() ![]() |
|
M. Winkler
, Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fuid drops, Comm. Partial Differ. Equ., 37 (2012)
, 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
|
M. Winkler
, Global weak solutions in a three-dimensional Chemotaxis-Navier-Stokes system, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 33 (2016)
, 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002.![]() ![]() ![]() |
|
M. Yamazaki
, Solutions in the Morrey spaces of the Navier-Stokes equation with time-dependent external force, Funkcial. Ekvac., 43 (2000)
, 419-460.
![]() ![]() |
|
M. Yamazaki
, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000)
, 635-675.
doi: 10.1007/PL00004418.![]() ![]() ![]() |
|
M. Yang, Z. Fu and S. Liu, Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces, Adv. Nonlinear Stud., 18 (2018), 517-535.
doi: 10.1515/ans-2017-6046.![]() ![]() |
|
M. Yang
, Z. Fu
and J. Sun
, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math., 60 (2017)
, 1837-1856.
doi: 10.1007/s11425-016-0490-y.![]() ![]() ![]() |
|
M. Yang
and J. Sun
, Gevrey regularity and Existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces, Commun. Pure Appl. Anal., 16 (2017)
, 1617-1639.
doi: 10.3934/cpaa.2017078.![]() ![]() ![]() |
|
C. Zhai and T. Zhang, Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity, J. Math. Phys. , 56 (2015), 091512, 18 pp.
doi: 10.1063/1.4931467.![]() ![]() ![]() |
|
Q. Zhang
, Local well-posedness for the Chemotaxis-Navier-Stokes equations in Besov spaces, Nonlinear Anal. Real World Appl., 17 (2014)
, 89-100.
doi: 10.1016/j.nonrwa.2013.10.008.![]() ![]() ![]() |
|
Q. Zhang
and Y. Li
, Global weak solutions for the three-dimensional Chemotaxis-NavierStokes system with nonlinear diffusion, J. Differential Equations, 259 (2015)
, 3730-3754.
doi: 10.1016/j.jde.2015.05.012.![]() ![]() ![]() |
|
Q. Zhang
and Y. Li
, Convergence rates of solutions for a two-dimensional Chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 2751-2759.
doi: 10.3934/dcdsb.2015.20.2751.![]() ![]() ![]() |
|
Q. Zhang
and X. Zheng
, Global well-posedness for the two-dimensional incompressible Chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014)
, 3078-3105.
doi: 10.1137/130936920.![]() ![]() ![]() |
|
T. Zhang
, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., 287 (2009)
, 211-224.
doi: 10.1007/s00220-008-0631-1.![]() ![]() ![]() |