April  2019, 24(4): 1677-1695. doi: 10.3934/dcdsb.2018287

Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques

1. 

S.N. Bose National Centre for Basic Sciences, JD Block, Sector Ⅲ, Salt Lake, Kolkata - 700106, India

2. 

Instituto de Física de São Carlos; IFSC/USP, Universidade de São Paulo Caixa Postal 369, CEP 13560-970, São Carlos-SP, Brazil

3. 

School of Management and Sciences, Maulana Abul Kalam Azad University of Technology, West Bengal, BF 142, Sector I, Salt Lake, Kolkata-700064, India

Received  March 2017 Revised  February 2018 Published  August 2018

This paper explores the class of equations of the Non-linear Schrödinger (NLS) type by employing both geometrical and spectral analysis methods. The work is developed in three stages. First, the geometrical method (AKS theorem) is used to derive different equations of the Non-linear Schrödinger (NLS) and Derivative Non-linear Schrödinger (DNLS) families. Second, the spectral technique (Tu method) is applied to obtain the hierarchies of equations belonging to these types. Third, the trace identity along with other techniques is used to obtain the corresponding Hamiltonian structures. It is found that the spectral method provides a simple algorithmic procedure to obtain the hierarchy as well as the Hamiltonian structure. Finally, the connection between the two formalisms is discussed and it is pointed out how application of these two techniques in unison can facilitate the understanding of integrable systems. In concurrence with Tu's method, Gesztesy and Holden also formulated a method of derivation of the trace formulas for integrable nonlinear evolution equations, this method is based on a contour-integration technique.

Citation: Partha Guha, Indranil Mukherjee. Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1677-1695. doi: 10.3934/dcdsb.2018287
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, (Cambridge: Cambridge University Press, 1991). doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. AblowitzD. J. KaupA. C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249-315.  doi: 10.1002/sapm1974534249.  Google Scholar

[3]

M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg de Vries type equations, Invent. Math., 50 (1979), 219-248.  doi: 10.1007/BF01410079.  Google Scholar

[4]

M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras and curves, Adv. Math., 38 (1980), 267-317.  doi: 10.1016/0001-8708(80)90007-9.  Google Scholar

[5]

C. Athorne and A. Fordy, Generalised KdV and mKdV equations associated with symmetric spaces, J. Phys. A, 20 (1987), 1377-1386.  doi: 10.1088/0305-4470/20/6/021.  Google Scholar

[6]

C. Athorne and A. Fordy, Integrable equations in (2 + 1) diemensions associated with symmetric and homogeneous spaces, J. Math. Phys., 28 (1987), 2018-2024.  doi: 10.1063/1.527463.  Google Scholar

[7]

F. Calogero and W. Eckhaus, Nonlinear evolution equations, rescalings, model PDES and their integrability: I, Inverse Problems, 3 (1987), 229-262.  doi: 10.1088/0266-5611/3/2/008.  Google Scholar

[8]

H. H. ChenY. C. Lee and C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method. Special issue on solitons in physics, Phys. Scripta, 20 (1979), 490-492.  doi: 10.1088/0031-8949/20/3-4/026.  Google Scholar

[9]

W. Eckhaus, The long-time behaviour for perturbed wave-equations and related problems, Trends in Applications of Pure Mathematics to Mechanics (Bad Honnef, 1985), Lecture Notes in Phys., Springer, Berlin, 249 (1986), 168-194. doi: 10.1007/BFb0016391.  Google Scholar

[10]

L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-540-69969-9.  Google Scholar

[11]

G. Falqui, Separation of variables for Lax systems: A bihamiltonian point of view, Fourth Italian-Latin American Conference on Applied and Industrial Mathematics (Havana, 2001), 393-403, Inst. Cybern. Math. Phys., Havana, 2001.  Google Scholar

[12]

G. Falqui, F. Magri and M. Pedroni, Soliton Equations, Bi-Hamiltonian Manifolds and Integrability, 21° Coloquio Brasileiro de Matematica. [21st Brazilian Mathematics Colloquium] Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997.  Google Scholar

[13]

G. Falqui, F. Magri and M. Pedroni, A bihamiltonian approach to separation of variables in mechanics, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEED '79 (Gallipoli, 1999), World Science, River Edge, NJ, 2000,258-266.  Google Scholar

[14]

H. FlaschkaA. C. Newell and T. Ratiu, Kac-Moody Lie algebras and soliton equations. Ⅱ. Lax equations associated with A1(1), Phys. D, 9 (1983), 300-323.  doi: 10.1016/0167-2789(83)90274-9.  Google Scholar

[15]

A. P. Fordy and P. P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras, Comm. Math. Phys., 89 (1983), 427-443.   Google Scholar

[16]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bihamiltonian systems, J. of Func. Anal., 99 (1991), 150-178.  doi: 10.1016/0022-1236(91)90057-C.  Google Scholar

[17]

I. M. Gelfand and I. Zakharevich, On the local geometry of bihamiltonian structures, The Gelfand Mathematical Seminar, 1990-1992 (Boston), Birkhäuser, 1993, 51-112.  Google Scholar

[18]

I. M. Gelfand and I. Zakharevich, Webs, Lenard schemes, and the local geometry of biHamiltonian Toda and Lax structures, Selecta Math. (N.S.), 6 (2000), 131-183.  doi: 10.1007/PL00001387.  Google Scholar

[19]

V. S. Gerdjikov and M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations: Ⅱ. Hierarchies of Hamiltonian structures, Bulg. J. Phys., 10 (1983), 130-143.   Google Scholar

[20] F. Gesztesy and H. Holden, Soliton equations and their algebro-geometric solutions Volume Ⅰ : (1+1)Dimensional Continuous Models, Cambridge University Press, 2003.  doi: 10.1017/CBO9780511546723.  Google Scholar
[21]

F. Gesztesy and H. Holden, A combined sine-Gordon and modified Korteweg-deVries hierarchy and its algebro-geometric solutions, Weikard, R and Weinstein, G (eds.), Differential Equations and Mathematical Physics (Studies in Advanced Mathematics, Providence, . RI, and Boston, MA: Amer. Math. Soc and International Press, 16 (2000), 133-173.  Google Scholar

[22]

F. Gesztesy and H. Holden, Trace formulas and conservation laws for nonlinear evolution equations, Rev.Math.Phys., 6 (1994), 51-95.  doi: 10.1142/S0129055X94000055.  Google Scholar

[23]

F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators, Acta Appl. Math., 39 (1995), 315-333.  doi: 10.1007/BF00994640.  Google Scholar

[24]

F. Gesztesy and H. Holden, Dubrovin equations and integrable systems on hyperelliptic curves, Math. Scand., 91 (2002), 91-126.  doi: 10.7146/math.scand.a-14381.  Google Scholar

[25]

F. Gesztesy, R. Ratnaseelan and G. Teschl, The KdV hierarchy and associated trace formulas, Gohberg, I, Lancaster, P and Shivakumar, P. N. (eds.), Recent Developments in Operator Theory and its applications (Operator Theory: Advances and Applications, Basel: Birkhauser, 87 (1996), 125-163.  Google Scholar

[26]

F. Gesztesy and R. Weikard, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math., 181 (1998), 63-108.  doi: 10.1007/BF02392748.  Google Scholar

[27]

F. Gesztesy and R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - an analytic approach, Bull. Amer. Math. Soc. (N.S), 35 (1998), 271-317.  doi: 10.1090/S0273-0979-98-00765-4.  Google Scholar

[28]

P. Guha, On Commuting flows of AKS hierarchy and twistor correspondence, Journal of Geom. Phys., 20 (1996), 207-217.  doi: 10.1016/0393-0440(95)00056-9.  Google Scholar

[29]

P. Guha, Adler-Kostant-Symes construction, bi-Hamiltonian manifolds, and KdV equations, J. Math. Phys., 38 (1997), 5167-5182.  doi: 10.1063/1.531935.  Google Scholar

[30]

P. Guha, AKS hierarchy and bi-Hamiltonian geometry of Gelfand-Zakharevich type, J. Math. Phys., 45 (2004), 2864-2884.  doi: 10.1063/1.1756698.  Google Scholar

[31]

D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrodinger equation, J. Math. Phys., 19 (1978), 798-801.  doi: 10.1063/1.523737.  Google Scholar

[32]

B. Kostant, Quantization and Representation Theory, in Representation Theory of Lie Groups, Lond. Math. Soc. Lect. Note, 34, edited by M. F. Atiyah. Google Scholar

[33]

A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys., 25 (1984), 3433-3438.  doi: 10.1063/1.526113.  Google Scholar

[34]

A. Kundu, Exact solutions to higher-order nonlinear equations through gauge transformation, Physica D, 25 (1987), 399-406.  doi: 10.1016/0167-2789(87)90113-8.  Google Scholar

[35]

J. Lenells, Exactly solvable model for nonlinear pulse propogation in optical fibers, Stud. Appl.Maths., 123 (2009), 215-232.  doi: 10.1111/j.1467-9590.2009.00454.x.  Google Scholar

[36]

J. Lenells and A. S. Fokas, On a novel integrable generalization of the nonlinear Schrodinger equation, Nonlinearity, 22 (2009), 11-27.  doi: 10.1088/0951-7715/22/1/002.  Google Scholar

[37]

F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19 (1978), 1156-1162.  doi: 10.1063/1.523777.  Google Scholar

[38]

A. C. Newell, Solitons in Mathematics and Physics, (Society for Industrial and Applied Mathematics, 1985). doi: 10.1137/1.9781611970227.  Google Scholar

[39]

T. Ratiu, The C. Neumann problem as a complete integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 264 (1981), 321-329.  doi: 10.1090/S0002-9947-1981-0603766-3.  Google Scholar

[40]

A. G. Reiman and M. A. Semenov-Tian-Sanskii, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations Ⅰ, Invent. Math., 54 (1979), 81-100.  doi: 10.1007/BF01391179.  Google Scholar

[41]

A. G. Reiman and M. A. Semenov-Tian-Sanskii, Soviet Math. Dokl., Current Algebras and Nonlinear Partial Differential Equations, 21 (1980), 630-634.   Google Scholar

[42]

C.-L. Terng, Soliton equations and differential geometry, J. Differential Geometry, 45 (1997), 407-445.  doi: 10.4310/jdg/1214459804.  Google Scholar

[43]

G. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30 (1989), 330-338.  doi: 10.1063/1.528449.  Google Scholar

[44]

G. Tu, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A: Math. Gen., 23 (1990), 3903-3922.  doi: 10.1088/0305-4470/23/17/020.  Google Scholar

[45]

G. Tu, A new hierarchy of integrable systems and its Hamiltonian structure, Science in China (Series A), 32 (1989), 142-153.  Google Scholar

[46]

G. Tu, On Liouville integrability of zero-curvature equations and the Yang hierarchy, J. Phys. A: Math. Gen., 22 (1989), 2375-2392.  doi: 10.1088/0305-4470/22/13/031.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, (Cambridge: Cambridge University Press, 1991). doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. AblowitzD. J. KaupA. C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249-315.  doi: 10.1002/sapm1974534249.  Google Scholar

[3]

M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg de Vries type equations, Invent. Math., 50 (1979), 219-248.  doi: 10.1007/BF01410079.  Google Scholar

[4]

M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras and curves, Adv. Math., 38 (1980), 267-317.  doi: 10.1016/0001-8708(80)90007-9.  Google Scholar

[5]

C. Athorne and A. Fordy, Generalised KdV and mKdV equations associated with symmetric spaces, J. Phys. A, 20 (1987), 1377-1386.  doi: 10.1088/0305-4470/20/6/021.  Google Scholar

[6]

C. Athorne and A. Fordy, Integrable equations in (2 + 1) diemensions associated with symmetric and homogeneous spaces, J. Math. Phys., 28 (1987), 2018-2024.  doi: 10.1063/1.527463.  Google Scholar

[7]

F. Calogero and W. Eckhaus, Nonlinear evolution equations, rescalings, model PDES and their integrability: I, Inverse Problems, 3 (1987), 229-262.  doi: 10.1088/0266-5611/3/2/008.  Google Scholar

[8]

H. H. ChenY. C. Lee and C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method. Special issue on solitons in physics, Phys. Scripta, 20 (1979), 490-492.  doi: 10.1088/0031-8949/20/3-4/026.  Google Scholar

[9]

W. Eckhaus, The long-time behaviour for perturbed wave-equations and related problems, Trends in Applications of Pure Mathematics to Mechanics (Bad Honnef, 1985), Lecture Notes in Phys., Springer, Berlin, 249 (1986), 168-194. doi: 10.1007/BFb0016391.  Google Scholar

[10]

L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-540-69969-9.  Google Scholar

[11]

G. Falqui, Separation of variables for Lax systems: A bihamiltonian point of view, Fourth Italian-Latin American Conference on Applied and Industrial Mathematics (Havana, 2001), 393-403, Inst. Cybern. Math. Phys., Havana, 2001.  Google Scholar

[12]

G. Falqui, F. Magri and M. Pedroni, Soliton Equations, Bi-Hamiltonian Manifolds and Integrability, 21° Coloquio Brasileiro de Matematica. [21st Brazilian Mathematics Colloquium] Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997.  Google Scholar

[13]

G. Falqui, F. Magri and M. Pedroni, A bihamiltonian approach to separation of variables in mechanics, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEED '79 (Gallipoli, 1999), World Science, River Edge, NJ, 2000,258-266.  Google Scholar

[14]

H. FlaschkaA. C. Newell and T. Ratiu, Kac-Moody Lie algebras and soliton equations. Ⅱ. Lax equations associated with A1(1), Phys. D, 9 (1983), 300-323.  doi: 10.1016/0167-2789(83)90274-9.  Google Scholar

[15]

A. P. Fordy and P. P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras, Comm. Math. Phys., 89 (1983), 427-443.   Google Scholar

[16]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bihamiltonian systems, J. of Func. Anal., 99 (1991), 150-178.  doi: 10.1016/0022-1236(91)90057-C.  Google Scholar

[17]

I. M. Gelfand and I. Zakharevich, On the local geometry of bihamiltonian structures, The Gelfand Mathematical Seminar, 1990-1992 (Boston), Birkhäuser, 1993, 51-112.  Google Scholar

[18]

I. M. Gelfand and I. Zakharevich, Webs, Lenard schemes, and the local geometry of biHamiltonian Toda and Lax structures, Selecta Math. (N.S.), 6 (2000), 131-183.  doi: 10.1007/PL00001387.  Google Scholar

[19]

V. S. Gerdjikov and M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations: Ⅱ. Hierarchies of Hamiltonian structures, Bulg. J. Phys., 10 (1983), 130-143.   Google Scholar

[20] F. Gesztesy and H. Holden, Soliton equations and their algebro-geometric solutions Volume Ⅰ : (1+1)Dimensional Continuous Models, Cambridge University Press, 2003.  doi: 10.1017/CBO9780511546723.  Google Scholar
[21]

F. Gesztesy and H. Holden, A combined sine-Gordon and modified Korteweg-deVries hierarchy and its algebro-geometric solutions, Weikard, R and Weinstein, G (eds.), Differential Equations and Mathematical Physics (Studies in Advanced Mathematics, Providence, . RI, and Boston, MA: Amer. Math. Soc and International Press, 16 (2000), 133-173.  Google Scholar

[22]

F. Gesztesy and H. Holden, Trace formulas and conservation laws for nonlinear evolution equations, Rev.Math.Phys., 6 (1994), 51-95.  doi: 10.1142/S0129055X94000055.  Google Scholar

[23]

F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators, Acta Appl. Math., 39 (1995), 315-333.  doi: 10.1007/BF00994640.  Google Scholar

[24]

F. Gesztesy and H. Holden, Dubrovin equations and integrable systems on hyperelliptic curves, Math. Scand., 91 (2002), 91-126.  doi: 10.7146/math.scand.a-14381.  Google Scholar

[25]

F. Gesztesy, R. Ratnaseelan and G. Teschl, The KdV hierarchy and associated trace formulas, Gohberg, I, Lancaster, P and Shivakumar, P. N. (eds.), Recent Developments in Operator Theory and its applications (Operator Theory: Advances and Applications, Basel: Birkhauser, 87 (1996), 125-163.  Google Scholar

[26]

F. Gesztesy and R. Weikard, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math., 181 (1998), 63-108.  doi: 10.1007/BF02392748.  Google Scholar

[27]

F. Gesztesy and R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - an analytic approach, Bull. Amer. Math. Soc. (N.S), 35 (1998), 271-317.  doi: 10.1090/S0273-0979-98-00765-4.  Google Scholar

[28]

P. Guha, On Commuting flows of AKS hierarchy and twistor correspondence, Journal of Geom. Phys., 20 (1996), 207-217.  doi: 10.1016/0393-0440(95)00056-9.  Google Scholar

[29]

P. Guha, Adler-Kostant-Symes construction, bi-Hamiltonian manifolds, and KdV equations, J. Math. Phys., 38 (1997), 5167-5182.  doi: 10.1063/1.531935.  Google Scholar

[30]

P. Guha, AKS hierarchy and bi-Hamiltonian geometry of Gelfand-Zakharevich type, J. Math. Phys., 45 (2004), 2864-2884.  doi: 10.1063/1.1756698.  Google Scholar

[31]

D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrodinger equation, J. Math. Phys., 19 (1978), 798-801.  doi: 10.1063/1.523737.  Google Scholar

[32]

B. Kostant, Quantization and Representation Theory, in Representation Theory of Lie Groups, Lond. Math. Soc. Lect. Note, 34, edited by M. F. Atiyah. Google Scholar

[33]

A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys., 25 (1984), 3433-3438.  doi: 10.1063/1.526113.  Google Scholar

[34]

A. Kundu, Exact solutions to higher-order nonlinear equations through gauge transformation, Physica D, 25 (1987), 399-406.  doi: 10.1016/0167-2789(87)90113-8.  Google Scholar

[35]

J. Lenells, Exactly solvable model for nonlinear pulse propogation in optical fibers, Stud. Appl.Maths., 123 (2009), 215-232.  doi: 10.1111/j.1467-9590.2009.00454.x.  Google Scholar

[36]

J. Lenells and A. S. Fokas, On a novel integrable generalization of the nonlinear Schrodinger equation, Nonlinearity, 22 (2009), 11-27.  doi: 10.1088/0951-7715/22/1/002.  Google Scholar

[37]

F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19 (1978), 1156-1162.  doi: 10.1063/1.523777.  Google Scholar

[38]

A. C. Newell, Solitons in Mathematics and Physics, (Society for Industrial and Applied Mathematics, 1985). doi: 10.1137/1.9781611970227.  Google Scholar

[39]

T. Ratiu, The C. Neumann problem as a complete integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 264 (1981), 321-329.  doi: 10.1090/S0002-9947-1981-0603766-3.  Google Scholar

[40]

A. G. Reiman and M. A. Semenov-Tian-Sanskii, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations Ⅰ, Invent. Math., 54 (1979), 81-100.  doi: 10.1007/BF01391179.  Google Scholar

[41]

A. G. Reiman and M. A. Semenov-Tian-Sanskii, Soviet Math. Dokl., Current Algebras and Nonlinear Partial Differential Equations, 21 (1980), 630-634.   Google Scholar

[42]

C.-L. Terng, Soliton equations and differential geometry, J. Differential Geometry, 45 (1997), 407-445.  doi: 10.4310/jdg/1214459804.  Google Scholar

[43]

G. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30 (1989), 330-338.  doi: 10.1063/1.528449.  Google Scholar

[44]

G. Tu, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A: Math. Gen., 23 (1990), 3903-3922.  doi: 10.1088/0305-4470/23/17/020.  Google Scholar

[45]

G. Tu, A new hierarchy of integrable systems and its Hamiltonian structure, Science in China (Series A), 32 (1989), 142-153.  Google Scholar

[46]

G. Tu, On Liouville integrability of zero-curvature equations and the Yang hierarchy, J. Phys. A: Math. Gen., 22 (1989), 2375-2392.  doi: 10.1088/0305-4470/22/13/031.  Google Scholar

[1]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[2]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[16]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[18]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[19]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[20]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (142)
  • HTML views (424)
  • Cited by (0)

Other articles
by authors

[Back to Top]