The dynamics of a class of one-dimensional polynomial maps are studied, and interesting dynamics are observed under certain conditions: the existence of periodic points with even periods except for one fixed point; the coexistence of two attractors, an attracting fixed point and a hidden attractor; the existence of a double period-doubling bifurcation, which is different from the classical period-doubling bifurcation of the Logistic map; the existence of Li-Yorke chaos. Furthermore, based on this one-dimensional map, the corresponding generalized Hénon map is investigated, and some interesting dynamics are found for certain parameter values: the coexistence of an attracting fixed point and a hidden attractor; the existence of Smale horseshoe for a subshift of finite type and also Li-Yorke chaos.
Citation: |
G. Chen
and T. Ueta
, Yet another chaotic attractor, Int. J. Bifurcation Chaos, 9 (1999)
, 1465-1466.
doi: 10.1142/S0218127499001024.![]() ![]() ![]() |
|
G. Chen, N. Kuznetsov, G. Leonov and T. Mokaev, Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems, Int. J. Bifurcation Chaos, 27 (2017), 1750115 (9 pages).
doi: 10.1142/S0218127417501152.![]() ![]() ![]() |
|
R. Devaney
and Z. Nitecki
, Shift automorphisms in the Hénon mapping, Commun. Math. Phys., 67 (1979)
, 137-146.
doi: 10.1007/BF01221362.![]() ![]() ![]() |
|
H. Dullin
and J. Meiss
, Generalized Hénon maps: The cubic diffeomorphisms of the plane, Phys. D, 143 (2000)
, 262-289.
doi: 10.1016/S0167-2789(00)00105-6.![]() ![]() ![]() |
|
S. Friedland
and J. Milnor
, Dynamical properties of plane polynomial automorphisms, Ergod. Th. & Dynam. Sys., 9 (1989)
, 67-99.
doi: 10.1017/S014338570000482X.![]() ![]() ![]() |
|
S. Gonchenko
, M. Li
and M. Malkin
, Generalized Hénon maps and Smale horseshoes of new types, Int. J. Bifurcation Chaos, 18 (2008)
, 3029-3052.
doi: 10.1142/S0218127408022238.![]() ![]() ![]() |
|
S. Gonchenko
, J. Meiss
and I. Ovsyannikov
, Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation, Regular and Chaotic Dynamics, 11 (2006)
, 191-212.
doi: 10.1070/RD2006v011n02ABEH000345.![]() ![]() ![]() |
|
S. Gonchenko
, I. Ovsyannikov
, C. Simó
and D. Turaev
, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Int. J. Bifurcation Chaos, 15 (2005)
, 3493-3508.
doi: 10.1142/S0218127405014180.![]() ![]() ![]() |
|
S. Gonchenko
, L. Shilnikov
and D. Turaev
, On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors, Regular and Chaotic Dynamics, 14 (2009)
, 137-147.
doi: 10.1134/S1560354709010092.![]() ![]() ![]() |
|
M. Hénon
, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976)
, 69-77.
doi: 10.1007/BF01608556.![]() ![]() ![]() |
|
S. Jafari, V.-T. Pham, S. Moghtadaei and S. Kingni, The relationship between chaotic maps and some chaotic systems with hidden attractors, Int. J. Bifurcation Chaos, 26 (2016), 1650211 (8 pages).
doi: 10.1142/S0218127416502114.![]() ![]() ![]() |
|
S. Jafari
, J. Sprott
and F. Nazarimehr
, Recent new examples of hidden attractors, Eur. Phys. J. Special Topics, 224 (2015)
, 1469-1476.
![]() |
|
H. Jiang
, Y. Liu
, Z. Wei
and L. Zhang
, Hidden chaotic attractors in a class of two-dimensional maps, Nonlinear Dyn., 85 (2016)
, 2719-2727.
doi: 10.1007/s11071-016-2857-3.![]() ![]() ![]() |
|
N. Kuznetsov
, G. Leonov
, T. Mokaev
, A. Prasad
and M. Shrimali
, Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn., 92 (2018)
, 267-285.
doi: 10.1007/s11071-018-4054-z.![]() ![]() |
|
G. Leonov and N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurcation Chaos, 23 (2013), 1330002 (69 pages).
doi: 10.1142/S0218127413300024.![]() ![]() ![]() |
|
G. Leonov
and N. Kuznetsov
, On differences and similarities in the analysis of Lorenz, Chen, and Lu systems, Appl. Math. Comput., 256 (2015)
, 334-343.
doi: 10.1016/j.amc.2014.12.132.![]() ![]() ![]() |
|
G. Leonov
, N. Kuznetsov
and V. Vagaitsev
, Localization of hidden Chua's attractors, Phys. Lett. A., 375 (2011)
, 2230-2233.
doi: 10.1016/j.physleta.2011.04.037.![]() ![]() ![]() |
|
T. Li
and J. Yorke
, Period three implies chaos, Am. Math. Mon., 82 (1975)
, 985-992.
doi: 10.1080/00029890.1975.11994008.![]() ![]() ![]() |
|
E. Lorenz
, Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963)
, 130-141.
![]() |
|
R. May
, Simple mathematical models with very complicated dynamics, Nature, 261 (1976)
, 45-67.
![]() |
|
M. Molaie, S Jafari, J. Sprott and M. Golpayegani, Simple chaotic flows with one stable equilibrium, Int. J. Bifurcation Chaos, 23 (2013), 1350188 (7 pages).
doi: 10.1142/S0218127413501885.![]() ![]() ![]() |
|
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, Florida, 1999.
![]() ![]() |
|
J. Sprott
, Some simple chaotic flows, Phys. Rev. E, 50 (1994)
, R647-R650.
doi: 10.1103/PhysRevE.50.R647.![]() ![]() ![]() |
|
X. Wang
and G. Chen
, Constructing a chaotic system with any number of equilibria, Nonlinear Dyn., 71 (2013)
, 429-436.
doi: 10.1007/s11071-012-0669-7.![]() ![]() ![]() |
|
X. Zhang
, Hyperbolic invariant sets of the real generalized Hénon maps, Chaos, Solitons, Fractals, 43 (2010)
, 31-41.
doi: 10.1016/j.chaos.2010.07.003.![]() ![]() ![]() |
|
X. Zhang, Chaotic polynomial maps, Int. J. Bifurcation Chaos, 26 (2016), 1650131 (37 pages).
doi: 10.1142/S0218127416501315.![]() ![]() ![]() |
|
X. Zhang
and Y. Shi
, Coupled-expanding maps for irreducible transition matrices, Int. J. Bifurcation Chaos, 20 (2010)
, 3769-3783.
doi: 10.1142/S0218127410028094.![]() ![]() ![]() |
|
X. Zhang
, Y. Shi
and G. Chen
, Some properties of coupled-expanding maps in compact sets, Proc. Amer. Math. Soc., 141 (2013)
, 585-595.
doi: 10.1090/S0002-9939-2012-11339-5.![]() ![]() ![]() |
Illustration diagram of the function
Illustration diagram of the function
Bifurcation diagram of
Bifurcation diagram of
Illustration diagram of the horseshoe for a subshift of finite type for the matrix
Illustration diagram for the map (4) with
Simulation of the map (4) with
Illustration diagram for the map (4) with