-
Previous Article
Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises
- DCDS-B Home
- This Issue
- Next Article
$ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity
1. | School of Mathematical Sciences, Peking University, Beijing 100871, China |
2. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China |
This paper studies the parabolic-elliptic Keller-Segel system with supercritical sensitivity: $u_{t} = \nabla·(D(u)\nabla u)-\nabla ·(S(u)\nabla v)$, $0 = Δ v -v+u$ in $Ω× (0,T)$, where the bounded domain $Ω\subset\mathbb{R}^n$, $n≥2$, subject to the non-flux boundary conditions, $D(u)≥ a_0(u+1)^{-q}$, $0≤ S(u)≤ b_0u(u+1)^{α-q-1}$ with $q \in \mathbb{R}$, $α>\frac{2}{n}$, and $a_0, b_0>0$. It is proved that the problem possesses a unique globally bounded solution for $α>\frac{2}{n}$ whenever $\|u_0\|_{L^{\frac{nα}{2}}}$ is sufficiently small. In addition, we establish the large-time behavior of solutions when $q = 0$.
References:
[1] |
M. Burger, M. Di Francesco and Y. Dolak-Struss,
The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear versus nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315.
doi: 10.1137/050637923. |
[2] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[3] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities,
Calc. Var. Partial Differential Equations, 55 (2016), Paper No. 107, 39pp.
doi: 10.1007/s00526-016-1027-2. |
[4] |
T. Cieślak and C. Morales-Rodrigo,
Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect: Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381.
|
[5] |
T. Cieślak and M. Winkler,
Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.
doi: 10.1088/0951-7715/21/5/009. |
[6] |
T. Cieślak and M. Winkler,
Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal. Real World Appl., 35 (2017), 1-19.
doi: 10.1016/j.nonrwa.2016.10.002. |
[7] |
T. Cieślak and M. Winkler,
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal., 159 (2017), 129-144.
doi: 10.1016/j.na.2016.04.013. |
[8] |
T. Hillen and K. J. Painter,
Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.
doi: 10.1006/aama.2001.0721. |
[9] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[10] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar |
[11] |
R. Kowalczyk,
Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566-588.
doi: 10.1016/j.jmaa.2004.12.009. |
[12] |
T. Nagai,
Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.
|
[13] |
L. Nirenberg,
An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733-737.
|
[14] |
K. J. Painter and T. Hillen,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart, 10 (2002), 501-543.
|
[15] |
T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis,
Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp.
doi: 10.1155/AAA/2006/23061. |
[16] |
Y. Sugiyama, Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis, Nonlinear Anal., 63 (2005), 1051-1062. Google Scholar |
[17] |
Y. Sugiyama and H. Kunii,
Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.
doi: 10.1016/j.jde.2006.03.003. |
[18] |
Y. Sugiyama and Y. Yahagi,
Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250 (2011), 3047-3087.
doi: 10.1016/j.jde.2011.01.016. |
[19] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[20] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse? Math. Meth. Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146. |
[21] |
M. Winkler,
Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.
doi: 10.1016/j.jmaa.2008.07.071. |
[22] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[23] |
M. Winkler,
A critical exponent in a degenerate parabolic parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.
doi: 10.1002/mma.319. |
[24] |
M. Winkler,
Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.
doi: 10.1088/1361-6544/aa565b. |
[25] |
M. Winkler and K. C. Djie,
Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.
doi: 10.1016/j.na.2009.07.045. |
[26] |
H. Yu, W. Wang and S. Zheng,
Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1635-1644.
doi: 10.3934/dcdsb.2017078. |
show all references
References:
[1] |
M. Burger, M. Di Francesco and Y. Dolak-Struss,
The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear versus nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315.
doi: 10.1137/050637923. |
[2] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[3] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities,
Calc. Var. Partial Differential Equations, 55 (2016), Paper No. 107, 39pp.
doi: 10.1007/s00526-016-1027-2. |
[4] |
T. Cieślak and C. Morales-Rodrigo,
Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect: Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381.
|
[5] |
T. Cieślak and M. Winkler,
Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.
doi: 10.1088/0951-7715/21/5/009. |
[6] |
T. Cieślak and M. Winkler,
Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal. Real World Appl., 35 (2017), 1-19.
doi: 10.1016/j.nonrwa.2016.10.002. |
[7] |
T. Cieślak and M. Winkler,
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal., 159 (2017), 129-144.
doi: 10.1016/j.na.2016.04.013. |
[8] |
T. Hillen and K. J. Painter,
Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.
doi: 10.1006/aama.2001.0721. |
[9] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[10] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar |
[11] |
R. Kowalczyk,
Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566-588.
doi: 10.1016/j.jmaa.2004.12.009. |
[12] |
T. Nagai,
Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.
|
[13] |
L. Nirenberg,
An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 733-737.
|
[14] |
K. J. Painter and T. Hillen,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart, 10 (2002), 501-543.
|
[15] |
T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis,
Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp.
doi: 10.1155/AAA/2006/23061. |
[16] |
Y. Sugiyama, Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis, Nonlinear Anal., 63 (2005), 1051-1062. Google Scholar |
[17] |
Y. Sugiyama and H. Kunii,
Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.
doi: 10.1016/j.jde.2006.03.003. |
[18] |
Y. Sugiyama and Y. Yahagi,
Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250 (2011), 3047-3087.
doi: 10.1016/j.jde.2011.01.016. |
[19] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[20] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse? Math. Meth. Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146. |
[21] |
M. Winkler,
Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.
doi: 10.1016/j.jmaa.2008.07.071. |
[22] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[23] |
M. Winkler,
A critical exponent in a degenerate parabolic parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.
doi: 10.1002/mma.319. |
[24] |
M. Winkler,
Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.
doi: 10.1088/1361-6544/aa565b. |
[25] |
M. Winkler and K. C. Djie,
Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.
doi: 10.1016/j.na.2009.07.045. |
[26] |
H. Yu, W. Wang and S. Zheng,
Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1635-1644.
doi: 10.3934/dcdsb.2017078. |
[1] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[2] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[3] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[4] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021019 |
[5] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[6] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[7] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[8] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[9] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[10] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[11] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[12] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[13] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[14] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[15] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[16] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[17] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[18] |
C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356 |
[19] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[20] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]