
-
Previous Article
Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling
- DCDS-B Home
- This Issue
-
Next Article
Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics
The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence
Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China |
We consider a compound Poisson risk process perturbed by a Brownian motion through using a potential measure where the claim sizes depend on inter-claim times via the Farlie-Gumbel-Morgenstern copula. We derive an integro-differential equation with certain boundary conditions for the distribution of the maximum surplus before ruin. This distribution can be calculated through the probability that the surplus process attains a given level from the initial surplus without first falling below zero. The explicit expressions for this distribution are derived when the claim amounts are exponentially distributed.
References:
[1] |
H. Albrecher, C. Constantinescu and S. Loisel,
Explicit ruin formulas for models with dependence among risks, Insurance: Mathematics and Economics, 48 (2011), 265-270.
doi: 10.1016/j.insmatheco.2010.11.007. |
[2] |
H. Albrecher and J. Teugels,
Exponential behavior in the presence of dependence in risk theory, Journal of Applied Probability, 43 (2006), 257-273.
doi: 10.1239/jap/1143936258. |
[3] |
S. Asmussen,
Stationary distributions for fluid flow models with or without Brownian noise, Communications in Statististics-Stochastic Models, 11 (1995), 21-49.
doi: 10.1080/15326349508807330. |
[4] |
A. N. Borodin and P. Salminen,
Handbook of Brownian Motion-Facts and Formulae, 2nd edition, Birkhäuser-Verlag, New York, 2002.
doi: 10.1007/978-3-0348-8163-0. |
[5] |
M. Boudreault, H. Cossette, D. Landriault and E. Marceau,
On a risk model with dependence between interclaim arrivals and claim sizes, Scandinavian Actuarial Journal, 2006 (2006), 265-285.
doi: 10.1080/03461230600992266. |
[6] |
E. C. K. Cheung,
A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium, Insurance: Mathematics and Economics, 48 (2011), 384-397.
doi: 10.1016/j.insmatheco.2011.01.006. |
[7] |
E. C. K. Cheung and D. Landriault,
A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model, Insurance: Mathematics and Economics, 46 (2010), 127-134.
doi: 10.1016/j.insmatheco.2009.07.009. |
[8] |
E. C. K. Cheung and D. Landriault,
Perturbed MAP risk models with dividend barrier strategies, Journal of Applied Probability, 46 (2009), 521-541.
doi: 10.1239/jap/1245676104. |
[9] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J. K. Woo,
Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models, Insurance: Mathematics and Economics, 46 (2010), 117-126.
doi: 10.1016/j.insmatheco.2009.05.009. |
[10] |
H. Cossette, E. Marceau and F. Marri,
On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula, Insurance: Mathematics and Economics, 43 (2008), 444-455.
doi: 10.1016/j.insmatheco.2008.08.009. |
[11] |
H. Cossette, E. Marceau and F. Marri,
Analysis of ruin measures for the classical compound Poisson risk model with dependence, Scandinavian Actuarial Journal, 2010 (2010), 221-245.
doi: 10.1080/03461230903211992. |
[12] |
M. Denuit, J. Dhaene, M. J. Goovaerts and R. Kaas,
Actuarial Theory for Dependent Risks-Measures, Orders and Models, Wiley, New York, 2005. |
[13] |
H. U. Gerber,
An extension of the renewal equation and its application in the collective theory of risk, Skandinavisk Aktuarietidskrift, (1970), 205-210.
|
[14] |
H. U. Gerber and B. Landry,
On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance: Mathematics and Economics, 22 (1998), 263-276.
doi: 10.1016/S0167-6687(98)00014-6. |
[15] |
W. Y. Jiang and Z. J. Yang,
Dividend payments in a risk model perturbed by diffusion with multiple thresholds, Stochastic Analysis and Applications, 31 (2013), 1097-1113.
doi: 10.1080/07362994.2013.819784. |
[16] |
W. Y. Jiang and Z. J. Yang,
The maximum surplus before ruin for dependent risk models through Farlie-Gumbel-Morgenstern copula, Scandinavian Actuarial Journal, 2016 (2016), 385-397.
doi: 10.1080/03461238.2014.936972. |
[17] |
S. Li,
The distribution of the dividend payments in the compound Poisson risk models perturbed by diffusion, Scandinavian Actuarial Journal, 2006 (2006), 73-85.
doi: 10.1080/03461230600589237. |
[18] |
S. Li,
The time of recovery and the maximum severity of ruin in a Sparre Andersen model, North American Actuarial Journal, 12 (2008), 413-427.
doi: 10.1080/10920277.2008.10597533. |
[19] |
S. Li and D. C. M. Dickson,
The maximum surplus before ruin in an Erlang$(n)$ risk process and related problems, Insurance: Mathematics and Economics, 38 (2006), 529-539.
doi: 10.1016/j.insmatheco.2005.11.005. |
[20] |
S. Li and J. Garrido,
On ruin for Erlang(n) risk process, Insurance: Mathematics and Economics, 34 (2004), 391-408.
doi: 10.1016/j.insmatheco.2004.01.002. |
[21] |
S. Li and Y. Lu,
On the maximum severity of ruin in the compound Poisson model with a threshold dividend strategy, Scandinavian Actuarial Journal, 2010 (2010), 136-147.
doi: 10.1080/03461230902850162. |
[22] |
E. O. Mihalyko and C. Mihalyko,
Mathematical investigation of the Gerber-Shiu function in the case of dependent inter-claim time and claim size, Insurance: Mathematics and Economics, 48 (2011), 378-383.
doi: 10.1016/j.insmatheco.2011.01.005. |
[23] |
C. C. L. Tsai and G. E. Willmot,
A generalized defective renewal equation for the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 30 (2002), 51-66.
doi: 10.1016/S0167-6687(01)00096-8. |
[24] |
Z. M. Zhang and H. Yang,
Gerber-Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times, Journal of Computational and Applied Mathematics, 235 (2011), 1189-1204.
doi: 10.1016/j.cam.2010.08.003. |
show all references
References:
[1] |
H. Albrecher, C. Constantinescu and S. Loisel,
Explicit ruin formulas for models with dependence among risks, Insurance: Mathematics and Economics, 48 (2011), 265-270.
doi: 10.1016/j.insmatheco.2010.11.007. |
[2] |
H. Albrecher and J. Teugels,
Exponential behavior in the presence of dependence in risk theory, Journal of Applied Probability, 43 (2006), 257-273.
doi: 10.1239/jap/1143936258. |
[3] |
S. Asmussen,
Stationary distributions for fluid flow models with or without Brownian noise, Communications in Statististics-Stochastic Models, 11 (1995), 21-49.
doi: 10.1080/15326349508807330. |
[4] |
A. N. Borodin and P. Salminen,
Handbook of Brownian Motion-Facts and Formulae, 2nd edition, Birkhäuser-Verlag, New York, 2002.
doi: 10.1007/978-3-0348-8163-0. |
[5] |
M. Boudreault, H. Cossette, D. Landriault and E. Marceau,
On a risk model with dependence between interclaim arrivals and claim sizes, Scandinavian Actuarial Journal, 2006 (2006), 265-285.
doi: 10.1080/03461230600992266. |
[6] |
E. C. K. Cheung,
A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium, Insurance: Mathematics and Economics, 48 (2011), 384-397.
doi: 10.1016/j.insmatheco.2011.01.006. |
[7] |
E. C. K. Cheung and D. Landriault,
A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model, Insurance: Mathematics and Economics, 46 (2010), 127-134.
doi: 10.1016/j.insmatheco.2009.07.009. |
[8] |
E. C. K. Cheung and D. Landriault,
Perturbed MAP risk models with dividend barrier strategies, Journal of Applied Probability, 46 (2009), 521-541.
doi: 10.1239/jap/1245676104. |
[9] |
E. C. K. Cheung, D. Landriault, G. E. Willmot and J. K. Woo,
Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models, Insurance: Mathematics and Economics, 46 (2010), 117-126.
doi: 10.1016/j.insmatheco.2009.05.009. |
[10] |
H. Cossette, E. Marceau and F. Marri,
On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula, Insurance: Mathematics and Economics, 43 (2008), 444-455.
doi: 10.1016/j.insmatheco.2008.08.009. |
[11] |
H. Cossette, E. Marceau and F. Marri,
Analysis of ruin measures for the classical compound Poisson risk model with dependence, Scandinavian Actuarial Journal, 2010 (2010), 221-245.
doi: 10.1080/03461230903211992. |
[12] |
M. Denuit, J. Dhaene, M. J. Goovaerts and R. Kaas,
Actuarial Theory for Dependent Risks-Measures, Orders and Models, Wiley, New York, 2005. |
[13] |
H. U. Gerber,
An extension of the renewal equation and its application in the collective theory of risk, Skandinavisk Aktuarietidskrift, (1970), 205-210.
|
[14] |
H. U. Gerber and B. Landry,
On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance: Mathematics and Economics, 22 (1998), 263-276.
doi: 10.1016/S0167-6687(98)00014-6. |
[15] |
W. Y. Jiang and Z. J. Yang,
Dividend payments in a risk model perturbed by diffusion with multiple thresholds, Stochastic Analysis and Applications, 31 (2013), 1097-1113.
doi: 10.1080/07362994.2013.819784. |
[16] |
W. Y. Jiang and Z. J. Yang,
The maximum surplus before ruin for dependent risk models through Farlie-Gumbel-Morgenstern copula, Scandinavian Actuarial Journal, 2016 (2016), 385-397.
doi: 10.1080/03461238.2014.936972. |
[17] |
S. Li,
The distribution of the dividend payments in the compound Poisson risk models perturbed by diffusion, Scandinavian Actuarial Journal, 2006 (2006), 73-85.
doi: 10.1080/03461230600589237. |
[18] |
S. Li,
The time of recovery and the maximum severity of ruin in a Sparre Andersen model, North American Actuarial Journal, 12 (2008), 413-427.
doi: 10.1080/10920277.2008.10597533. |
[19] |
S. Li and D. C. M. Dickson,
The maximum surplus before ruin in an Erlang$(n)$ risk process and related problems, Insurance: Mathematics and Economics, 38 (2006), 529-539.
doi: 10.1016/j.insmatheco.2005.11.005. |
[20] |
S. Li and J. Garrido,
On ruin for Erlang(n) risk process, Insurance: Mathematics and Economics, 34 (2004), 391-408.
doi: 10.1016/j.insmatheco.2004.01.002. |
[21] |
S. Li and Y. Lu,
On the maximum severity of ruin in the compound Poisson model with a threshold dividend strategy, Scandinavian Actuarial Journal, 2010 (2010), 136-147.
doi: 10.1080/03461230902850162. |
[22] |
E. O. Mihalyko and C. Mihalyko,
Mathematical investigation of the Gerber-Shiu function in the case of dependent inter-claim time and claim size, Insurance: Mathematics and Economics, 48 (2011), 378-383.
doi: 10.1016/j.insmatheco.2011.01.005. |
[23] |
C. C. L. Tsai and G. E. Willmot,
A generalized defective renewal equation for the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 30 (2002), 51-66.
doi: 10.1016/S0167-6687(01)00096-8. |
[24] |
Z. M. Zhang and H. Yang,
Gerber-Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times, Journal of Computational and Applied Mathematics, 235 (2011), 1189-1204.
doi: 10.1016/j.cam.2010.08.003. |
[1] |
Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217 |
[2] |
Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537 |
[3] |
Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129 |
[4] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[5] |
Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57 |
[6] |
Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249 |
[7] |
Ichrak Bouacida, Mourad Kerboua, Sami Segni. Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022028 |
[8] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[9] |
Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677 |
[10] |
Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026 |
[11] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021051 |
[12] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022025 |
[13] |
Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885 |
[14] |
Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021021 |
[15] |
Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379 |
[16] |
Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 |
[17] |
Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417 |
[18] |
Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053 |
[19] |
Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 |
[20] |
Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]