Hysteresis is an important issue in modeling piezoelectric materials, for example, in applications to energy harvesting, where hysteresis losses may influence the efficiency of the process.The main problem in numerical simulations is the inversion of the underlying hysteresis operator.Moreover, hysteresis dissipation is accompanied with heat production, which in turn increases thetemperature of the device and may change its physical characteristics. More accurate models thereforehave to take the temperature dependence into account for a correct energy balance.We prove here that the classical Preisach operator with a fairly general parameter-dependenceadmits a Lipschitz continuous inverse in the space of right-continuous regulated functions, propose a time-discrete and memory-discrete inversion algorithm, and show that higher regularity of the inputs leads to a higher regularity of the output of the inverse.
Citation: |
[1] |
M. Al Janaideh, F. Deasy and P. Krejčí, Inversion of hysteresis and creep operators, Physica B: Condensed Matter, 407 (2012), 1354-1356.
![]() |
[2] |
M. Brokate and P. Krejčí, Weak differentiability of scalar hysteresis operators, Discrete Cont. Dyn. Systems A, 35 (2015), 2405-2421.
doi: 10.3934/dcds.2015.35.2405.![]() ![]() ![]() |
[3] |
M. Brokate and A. Visintin, Properties of the Preisach model for hysteresis, J. Reine Angew. Math., 402 (1989), 1-40.
doi: 10.1515/crll.1989.402.1.![]() ![]() ![]() |
[4] |
R. Cross, A. M. Krasnosel'skii and A. V. Pokrovskii, A time-dependent Preisach model, Physica B, 306 (2001), 206-210.
![]() |
[5] |
D. Davino, A. Giustiniani and C. Visone, Magnetoelastic energy harvesting: Modeling and
experiments, in Smart Actuation and Sensing Systems - Recent Advances and Future Challenges (G. Berselli, R. Vertechy and G. Vassura, eds.), InTech, (2012), 487-512.
![]() |
[6] |
D. Davino, P. Krejčí, A. Pimenov, D. Rachinskii and C. Visone, Analysis of an operator-differential model for magnetostrictive energy harvesting, Communications in Nonlinear Science and Numerical Simulation, 39 (2016), 504-519.
doi: 10.1016/j.cnsns.2016.04.004.![]() ![]() ![]() |
[7] |
D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through 'thermodynamic' compatibility,
Smart Materials and Structures, 22 (2013), 095009.
![]() |
[8] |
B. Kaltenbacher and P. Krejčí, A thermodynamically consistent phenomenological model for ferroeletric and ferroelastic hysteresis, ZAMM - Z. Angew. Math. Mech., 96 (2016), 874-891.
doi: 10.1002/zamm.201400292.![]() ![]() ![]() |
[9] |
B. Kaltenbacher and P. Krejčí, Analysis of an optimization problem for a piezoelectric energy harvester to appear in Arch. Appl. Mech.
doi: 10.1007/s00419-018-1459-6.![]() ![]() |
[10] |
M. Kamlah, Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena, Continuum Mechanics and Thermodynamics, 13 (2001), 219-268.
![]() |
[11] |
P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z., 193 (1986), 247-264.
doi: 10.1007/BF01174335.![]() ![]() ![]() |
[12] |
P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat., 34 (1989), 364-374.
![]() ![]() |
[13] |
P. Krejčí, The Kurzweil integral and hysteresis, Journal of Physics: Conference Series, 55 (2006), 144-154.
![]() |
[14] |
P. Krejčí, The Preisach hysteresis model: Error bounds for numerical identification and inversion, Discrete Contin. Dyn. Syst Ser. S, 6 (2013), 101-119.
doi: 10.3934/dcdss.2013.6.101.![]() ![]() ![]() |
[15] |
P. Krejčí, H. Lamba, G. A. Monteiro and D. Rachinskii, The Kurzweil integral in financial market modeling, Math. Bohem., 141 (2016), 261-286.
doi: 10.21136/MB.2016.18.![]() ![]() ![]() |
[16] |
P. Krejčí, H. Lamba and D. Rachinskii, Global stability of a piecewise linear macroeconomic model with a continuum of equilibrium states and sticky expectation, arXiv: 1711.07563.
![]() |
[17] |
P. Krejčí and Ph. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.
![]() ![]() |
[18] |
P. Krejčí and G. A. Monteiro, Oscillations of a temperature-dependent piezoelectric rod, arXiv: 1803.10000
![]() |
[19] |
K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities - A modified Prandtl-Ishlinskii approach, Eur. J. Control, 9 (2003), 407-418.
![]() |
[20] |
F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302.
![]() |
[21] |
C. Visone and M. Sjöström, Exact invertible hysteresis models based on play operators, Physica B: Condensed Matter, 343 (2004), 148-152.
![]() |