In this paper, we will prove the uniqueness of traveling front solutions with critical and noncritical speeds, connecting the origin and the positive equilibrium, for the classical competitive Lotka-Volterra system with diffusion in the weak competition, which partially answers the open problem presented by Tang and Fife in [
Citation: |
[1] |
S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.
doi: 10.1016/0362-546X(91)90152-Q.![]() ![]() ![]() |
[2] |
S. Ahmad, A. C. Lazer and A. Tineo, Traveling waves for a system of equations, Nonlinear Anal., 68 (2008), 3909-3912.
doi: 10.1016/j.na.2007.04.029.![]() ![]() ![]() |
[3] |
Q. Bian, W. Zhang and Z. X. Yu, Temporally discrete three-species Lotka-Volterra competitive systems with time delays, Taiwanese J. Math., 20 (2016), 49-75.
doi: 10.11650/tjm.20.2016.5597.![]() ![]() ![]() |
[4] |
P de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Inst. Math. Polish Acad. Sci. Zam., 190 (1979), 11-79.
![]() |
[5] |
J. Fang and J. H. Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems, Discret. Contin. Dyn. Syst., 32 (2012), 3043-3058.
doi: 10.3934/dcds.2012.32.3043.![]() ![]() ![]() |
[6] |
W. Feng, W. H. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discret. Contin. Dyn. Syst. Ser. B, 21 (2016), 815-836.
doi: 10.3934/dcdsb.2016.21.815.![]() ![]() ![]() |
[7] |
A. W. Leung, X. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discret. Contin. Dyn. Syst. Ser. B, 15 (2011), 171-196.
doi: 10.3934/dcdsb.2011.15.171.![]() ![]() ![]() |
[8] |
A. W. Leung, X. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), 902-924.
doi: 10.1016/j.jmaa.2007.05.066.![]() ![]() ![]() |
[9] |
K. Li and X. Li, Asymptotic behavior and uniqueness of traveling wave solutions in Ricker competition system, J. Math. Anal. Appl., 389 (2012), 486-497.
doi: 10.1016/j.jmaa.2011.11.055.![]() ![]() ![]() |
[10] |
W. T. Li, G. Lin and S. G. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.
doi: 10.1088/0951-7715/19/6/003.![]() ![]() ![]() |
[11] |
G. Lin, Minimal wave speed of competitive diffusive systems with time delays, Appl. Math. Lett., 76 (2018), 164-169.
doi: 10.1016/j.aml.2017.08.018.![]() ![]() ![]() |
[12] |
G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, European J. Appl. Math., 23 (2012), 669-689.
doi: 10.1017/S0956792512000198.![]() ![]() ![]() |
[13] |
G. Lin, W. T. Li and M. Ma, Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discret. Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414.
doi: 10.3934/dcdsb.2010.13.393.![]() ![]() ![]() |
[14] |
G. Lin and S. G. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dynam. Differential Equations, 26 (2014), 583-605.
doi: 10.1007/s10884-014-9355-4.![]() ![]() ![]() |
[15] |
Z. G. Lin, M. Pedersen and C. R. Tian, Traveling wave solutions for reaction-diffusion systems, Nonlinear Anal., 73 (2010), 3303-3313.
doi: 10.1016/j.na.2010.07.010.![]() ![]() ![]() |
[16] |
W. H. Ruan, W. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.
doi: 10.1016/j.jmaa.2016.10.070.![]() ![]() ![]() |
[17] |
M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77.
doi: 10.1007/BF00283257.![]() ![]() ![]() |
[18] |
J. H. V. Vuuren, The existence of travelling plane waves in a general class of competition-diffusion systems, IMA J. Appl. Math., 55 (1995), 135-148.
doi: 10.1093/imamat/55.2.135.![]() ![]() ![]() |
[19] |
Y. Wang and X. Li, Entire solutions for the classical competitive Lotka-Volterra system with diffusion in the weak competition case, Nonlinear Anal. Real World Appl., 42 (2018), 1-23.
doi: 10.1016/j.nonrwa.2017.12.002.![]() ![]() ![]() |
[20] |
C. H. Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discret. Cont. Dyn. Syst. B, 18 (2013), 2441-2455.
doi: 10.3934/dcdsb.2013.18.2441.![]() ![]() ![]() |
[21] |
J. Xia, Z. X. Yu, Y. C. Dong and H. Y. Li, Traveling waves for n-species competitive system with nonlocal dispersals and delays, Appl. Math. Comput., 287/288 (2016), 201-213.
doi: 10.1016/j.amc.2016.04.025.![]() ![]() ![]() |
[22] |
Z. X. Yu and R. Yuan, Traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.
doi: 10.1017/S1446181109000406.![]() ![]() ![]() |
[23] |
Z. X. Yu and R. Yuan, Traveling waves for a Lotka-Volterra competition system with diffusion, Math. Comput. Model, 53 (2011), 1035-1043.
doi: 10.1016/j.mcm.2010.11.061.![]() ![]() ![]() |
[24] |
Z. X. Yu and H. K. Zhao, Traveling waves for competitive Lotka-Volterra systems with spatial diffusions and spatio-temporal delays, Appl. Math. Comput., 242 (2014), 669-678.
doi: 10.1016/j.amc.2014.06.058.![]() ![]() ![]() |