July  2019, 24(7): 3067-3075. doi: 10.3934/dcdsb.2018300

Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case

1. 

School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

* Corresponding author: Xiong Li

Received  March 2018 Revised  July 2018 Published  October 2018

Fund Project: The second author is supported by NSF grant 11571041 and the Fundamental Research Funds for the Central Universities.

In this paper, we will prove the uniqueness of traveling front solutions with critical and noncritical speeds, connecting the origin and the positive equilibrium, for the classical competitive Lotka-Volterra system with diffusion in the weak competition, which partially answers the open problem presented by Tang and Fife in [17]. In fact, once these traveling front solutions have the same wave speed and the same asymptotic behavior at $ξ = ±∞$, they are unique up to translation.

Citation: Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300
References:
[1]

S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.  doi: 10.1016/0362-546X(91)90152-Q.  Google Scholar

[2]

S. AhmadA. C. Lazer and A. Tineo, Traveling waves for a system of equations, Nonlinear Anal., 68 (2008), 3909-3912.  doi: 10.1016/j.na.2007.04.029.  Google Scholar

[3]

Q. BianW. Zhang and Z. X. Yu, Temporally discrete three-species Lotka-Volterra competitive systems with time delays, Taiwanese J. Math., 20 (2016), 49-75.  doi: 10.11650/tjm.20.2016.5597.  Google Scholar

[4]

P de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Inst. Math. Polish Acad. Sci. Zam., 190 (1979), 11-79.   Google Scholar

[5]

J. Fang and J. H. Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems, Discret. Contin. Dyn. Syst., 32 (2012), 3043-3058.  doi: 10.3934/dcds.2012.32.3043.  Google Scholar

[6]

W. FengW. H. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discret. Contin. Dyn. Syst. Ser. B, 21 (2016), 815-836.  doi: 10.3934/dcdsb.2016.21.815.  Google Scholar

[7]

A. W. LeungX. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discret. Contin. Dyn. Syst. Ser. B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[8]

A. W. LeungX. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), 902-924.  doi: 10.1016/j.jmaa.2007.05.066.  Google Scholar

[9]

K. Li and X. Li, Asymptotic behavior and uniqueness of traveling wave solutions in Ricker competition system, J. Math. Anal. Appl., 389 (2012), 486-497.  doi: 10.1016/j.jmaa.2011.11.055.  Google Scholar

[10]

W. T. LiG. Lin and S. G. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[11]

G. Lin, Minimal wave speed of competitive diffusive systems with time delays, Appl. Math. Lett., 76 (2018), 164-169.  doi: 10.1016/j.aml.2017.08.018.  Google Scholar

[12]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, European J. Appl. Math., 23 (2012), 669-689.  doi: 10.1017/S0956792512000198.  Google Scholar

[13]

G. LinW. T. Li and M. Ma, Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discret. Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[14]

G. Lin and S. G. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dynam. Differential Equations, 26 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[15]

Z. G. LinM. Pedersen and C. R. Tian, Traveling wave solutions for reaction-diffusion systems, Nonlinear Anal., 73 (2010), 3303-3313.  doi: 10.1016/j.na.2010.07.010.  Google Scholar

[16]

W. H. RuanW. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.  doi: 10.1016/j.jmaa.2016.10.070.  Google Scholar

[17]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77.  doi: 10.1007/BF00283257.  Google Scholar

[18]

J. H. V. Vuuren, The existence of travelling plane waves in a general class of competition-diffusion systems, IMA J. Appl. Math., 55 (1995), 135-148.  doi: 10.1093/imamat/55.2.135.  Google Scholar

[19]

Y. Wang and X. Li, Entire solutions for the classical competitive Lotka-Volterra system with diffusion in the weak competition case, Nonlinear Anal. Real World Appl., 42 (2018), 1-23.  doi: 10.1016/j.nonrwa.2017.12.002.  Google Scholar

[20]

C. H. Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discret. Cont. Dyn. Syst. B, 18 (2013), 2441-2455.  doi: 10.3934/dcdsb.2013.18.2441.  Google Scholar

[21]

J. XiaZ. X. YuY. C. Dong and H. Y. Li, Traveling waves for n-species competitive system with nonlocal dispersals and delays, Appl. Math. Comput., 287/288 (2016), 201-213.  doi: 10.1016/j.amc.2016.04.025.  Google Scholar

[22]

Z. X. Yu and R. Yuan, Traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.  doi: 10.1017/S1446181109000406.  Google Scholar

[23]

Z. X. Yu and R. Yuan, Traveling waves for a Lotka-Volterra competition system with diffusion, Math. Comput. Model, 53 (2011), 1035-1043.  doi: 10.1016/j.mcm.2010.11.061.  Google Scholar

[24]

Z. X. Yu and H. K. Zhao, Traveling waves for competitive Lotka-Volterra systems with spatial diffusions and spatio-temporal delays, Appl. Math. Comput., 242 (2014), 669-678.  doi: 10.1016/j.amc.2014.06.058.  Google Scholar

show all references

References:
[1]

S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), 893-901.  doi: 10.1016/0362-546X(91)90152-Q.  Google Scholar

[2]

S. AhmadA. C. Lazer and A. Tineo, Traveling waves for a system of equations, Nonlinear Anal., 68 (2008), 3909-3912.  doi: 10.1016/j.na.2007.04.029.  Google Scholar

[3]

Q. BianW. Zhang and Z. X. Yu, Temporally discrete three-species Lotka-Volterra competitive systems with time delays, Taiwanese J. Math., 20 (2016), 49-75.  doi: 10.11650/tjm.20.2016.5597.  Google Scholar

[4]

P de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Inst. Math. Polish Acad. Sci. Zam., 190 (1979), 11-79.   Google Scholar

[5]

J. Fang and J. H. Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems, Discret. Contin. Dyn. Syst., 32 (2012), 3043-3058.  doi: 10.3934/dcds.2012.32.3043.  Google Scholar

[6]

W. FengW. H. Ruan and X. Lu, On existence of wavefront solutions in mixed monotone reaction-diffusion systems, Discret. Contin. Dyn. Syst. Ser. B, 21 (2016), 815-836.  doi: 10.3934/dcdsb.2016.21.815.  Google Scholar

[7]

A. W. LeungX. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discret. Contin. Dyn. Syst. Ser. B, 15 (2011), 171-196.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[8]

A. W. LeungX. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), 902-924.  doi: 10.1016/j.jmaa.2007.05.066.  Google Scholar

[9]

K. Li and X. Li, Asymptotic behavior and uniqueness of traveling wave solutions in Ricker competition system, J. Math. Anal. Appl., 389 (2012), 486-497.  doi: 10.1016/j.jmaa.2011.11.055.  Google Scholar

[10]

W. T. LiG. Lin and S. G. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[11]

G. Lin, Minimal wave speed of competitive diffusive systems with time delays, Appl. Math. Lett., 76 (2018), 164-169.  doi: 10.1016/j.aml.2017.08.018.  Google Scholar

[12]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, European J. Appl. Math., 23 (2012), 669-689.  doi: 10.1017/S0956792512000198.  Google Scholar

[13]

G. LinW. T. Li and M. Ma, Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discret. Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[14]

G. Lin and S. G. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dynam. Differential Equations, 26 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[15]

Z. G. LinM. Pedersen and C. R. Tian, Traveling wave solutions for reaction-diffusion systems, Nonlinear Anal., 73 (2010), 3303-3313.  doi: 10.1016/j.na.2010.07.010.  Google Scholar

[16]

W. H. RuanW. Feng and X. Lu, On traveling wave solutions in general reaction-diffusion systems with time delays, J. Math. Anal. Appl., 448 (2017), 376-400.  doi: 10.1016/j.jmaa.2016.10.070.  Google Scholar

[17]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77.  doi: 10.1007/BF00283257.  Google Scholar

[18]

J. H. V. Vuuren, The existence of travelling plane waves in a general class of competition-diffusion systems, IMA J. Appl. Math., 55 (1995), 135-148.  doi: 10.1093/imamat/55.2.135.  Google Scholar

[19]

Y. Wang and X. Li, Entire solutions for the classical competitive Lotka-Volterra system with diffusion in the weak competition case, Nonlinear Anal. Real World Appl., 42 (2018), 1-23.  doi: 10.1016/j.nonrwa.2017.12.002.  Google Scholar

[20]

C. H. Wu, Spreading speed and traveling waves for a two-species weak competition system with free boundary, Discret. Cont. Dyn. Syst. B, 18 (2013), 2441-2455.  doi: 10.3934/dcdsb.2013.18.2441.  Google Scholar

[21]

J. XiaZ. X. YuY. C. Dong and H. Y. Li, Traveling waves for n-species competitive system with nonlocal dispersals and delays, Appl. Math. Comput., 287/288 (2016), 201-213.  doi: 10.1016/j.amc.2016.04.025.  Google Scholar

[22]

Z. X. Yu and R. Yuan, Traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.  doi: 10.1017/S1446181109000406.  Google Scholar

[23]

Z. X. Yu and R. Yuan, Traveling waves for a Lotka-Volterra competition system with diffusion, Math. Comput. Model, 53 (2011), 1035-1043.  doi: 10.1016/j.mcm.2010.11.061.  Google Scholar

[24]

Z. X. Yu and H. K. Zhao, Traveling waves for competitive Lotka-Volterra systems with spatial diffusions and spatio-temporal delays, Appl. Math. Comput., 242 (2014), 669-678.  doi: 10.1016/j.amc.2014.06.058.  Google Scholar

[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[4]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[5]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[6]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[7]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[8]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[9]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[10]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[11]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[12]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[13]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[14]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[15]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[16]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[17]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[20]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 1.27

Article outline

[Back to Top]