• Previous Article
    Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls
  • DCDS-B Home
  • This Issue
  • Next Article
    Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case
July  2019, 24(7): 3077-3088. doi: 10.3934/dcdsb.2018301

On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system

School of Data Sciences, Zhejiang University of Finance & Economics, Hangzhou, 310018, China

* Corresponding author E-mail: dmyan@zufe.edu.cn(Dongming Yan)

Received  March 2018 Published  October 2018

In this paper, the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system is investigated. By using the Lyapunov-Schmidt method, combining with the implicit function theorem, we prove that this system bifurcates from the trivial solution to the nontrivial solution branch as parameter crosses certain critical value. The expression of bifurcated solution is also obtained.

Citation: Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301
References:
[1]

D. BrochetD. Hilhorst and A. Novick-Cohen, Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 7 (1994), 83-87.  doi: 10.1016/0893-9659(94)90118-X.  Google Scholar

[2]

J. Cahn and A. Novick-Cohen, Evolution equations for phase separation and ordering in binary alloys, J. Statist. Phys., 76 (1994), 877-909.   Google Scholar

[3]

H. Chan and J. Wei, Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609.  doi: 10.1016/j.jde.2016.12.010.  Google Scholar

[4]

P. Frank and J. Wei, Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, Journal of Functional Analysis, 264 (2013), 1131-1167.  doi: 10.1016/j.jfa.2012.03.010.  Google Scholar

[5]

M. Gokieli and A. Ito, Global attractor for the Cahn-Hilliard/Allen-Cahn system, Nonlinear Analysis, 52 (2003), 1821-1841.  doi: 10.1016/S0362-546X(02)00303-6.  Google Scholar

[6]

M. Gokieli and L. Marcinkowski, Modelling phase transitions in alloys, Nonlinear Analysis, 63 (2005), e1143-e1153.   Google Scholar

[7]

M. Kubo, The Cahn-Hilliard equation with time-dependent constraint, Nonlinear Analysis, 75 (2012), 5672-5685.  doi: 10.1016/j.na.2012.05.015.  Google Scholar

[8]

C. Laurence and M. Alain, Finite-dimensional attractors for a model of Allen-Cahn equation based on a microforce balance, Comptes Rendus de l'Academie des Sciences-Series I-Mathematics, 329 (1999), 1109-1114.  doi: 10.1016/S0764-4442(00)88483-9.  Google Scholar

[9]

D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations, 149 (1998), 191-210.  doi: 10.1006/jdeq.1998.3429.  Google Scholar

[10]

T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[11]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. Google Scholar

[12]

A. Novick-Cohen, Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Physica D, 137 (2000), 1-24.  doi: 10.1016/S0167-2789(99)00162-1.  Google Scholar

[13]

L. SongY. Zhang and T. Ma, Global attractor of the Cahn-Hilliard equation in Hk spaces, J. Math. Anal. Appl, 355 (2009), 53-62.  doi: 10.1016/j.jmaa.2009.01.035.  Google Scholar

show all references

References:
[1]

D. BrochetD. Hilhorst and A. Novick-Cohen, Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 7 (1994), 83-87.  doi: 10.1016/0893-9659(94)90118-X.  Google Scholar

[2]

J. Cahn and A. Novick-Cohen, Evolution equations for phase separation and ordering in binary alloys, J. Statist. Phys., 76 (1994), 877-909.   Google Scholar

[3]

H. Chan and J. Wei, Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609.  doi: 10.1016/j.jde.2016.12.010.  Google Scholar

[4]

P. Frank and J. Wei, Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, Journal of Functional Analysis, 264 (2013), 1131-1167.  doi: 10.1016/j.jfa.2012.03.010.  Google Scholar

[5]

M. Gokieli and A. Ito, Global attractor for the Cahn-Hilliard/Allen-Cahn system, Nonlinear Analysis, 52 (2003), 1821-1841.  doi: 10.1016/S0362-546X(02)00303-6.  Google Scholar

[6]

M. Gokieli and L. Marcinkowski, Modelling phase transitions in alloys, Nonlinear Analysis, 63 (2005), e1143-e1153.   Google Scholar

[7]

M. Kubo, The Cahn-Hilliard equation with time-dependent constraint, Nonlinear Analysis, 75 (2012), 5672-5685.  doi: 10.1016/j.na.2012.05.015.  Google Scholar

[8]

C. Laurence and M. Alain, Finite-dimensional attractors for a model of Allen-Cahn equation based on a microforce balance, Comptes Rendus de l'Academie des Sciences-Series I-Mathematics, 329 (1999), 1109-1114.  doi: 10.1016/S0764-4442(00)88483-9.  Google Scholar

[9]

D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations, 149 (1998), 191-210.  doi: 10.1006/jdeq.1998.3429.  Google Scholar

[10]

T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[11]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, Singapore, 2005. Google Scholar

[12]

A. Novick-Cohen, Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Physica D, 137 (2000), 1-24.  doi: 10.1016/S0167-2789(99)00162-1.  Google Scholar

[13]

L. SongY. Zhang and T. Ma, Global attractor of the Cahn-Hilliard equation in Hk spaces, J. Math. Anal. Appl, 355 (2009), 53-62.  doi: 10.1016/j.jmaa.2009.01.035.  Google Scholar

[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[3]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[4]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[5]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[6]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[9]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[10]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[11]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[12]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[13]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[14]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[15]

Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358

[16]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[17]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[18]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[19]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[20]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

2019 Impact Factor: 1.27

Article outline

[Back to Top]